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we stated that wave optics and
results for the radiative properties

incidence. Assuming both sides of the multilayer
the reflectivity and transmissivity averaged over the

structure. Compare the results for wave ind ray tracing.

O) For 10, 100, 1000 periods; calculate the average reflectivity

5,19 Landauer formulation for electron therrnal conduction, A'metallic square

. nanowire is placed between two thermal reseryoirs at temPeratures T1 and T2'
I Assume that electron transmissivity is equal to one. Derive an expression for the

tlermal conductivity of the nanowire contributed by the electrons.

5.2O Coherence length of blackbody radiation. Estimate the coherence length of a

blackbody radiation source at 10 K and 300 K.
5.21 Coherence length of laser radiation. bstimate the coherence of a laser radiation

with a central wavelength of 1.06 pm and a spectral width of 10 A.
5.22 Coherence propertiesif electrons. At low ternperaturcs, the Fermi velocity in

a material is 2J6 x 10s ms-l, the electron relaxation time is 3.8 ps (l ps :
10-12 s), and the phase-breaking time is 18 ps. Calculate the mean free path and

the phase coherence length of an electron.
5.23 Phonon group velocity. The phonon dispersion for a monatomic lattice chain is

l-E t kat(t):rr,l; lt*;l
Derive an expression of its group.velocity. Prove that the group velocity at the

zone boundary is zero.
5.24 Dffirence betvveenwave and particle approaches (project type).In section 5

radiation. Consider a periodic structure made of two alternating layers
refractive indices of (4,0) and (2,0), that is, nonabsorbing films. Blackbody
radiation at 1000 K comes toward the periodic multilayer structure at normal

structure are vacuum, calculate
blackbody spectrum for the

following cases, using wave optics and ray tracing:
(a) For each layer thickness of 1 pm, 10 pm, and 100 pm calculate the variation

of reflectivity and transmissivity as a function of the number of periods in the

and transmissivity
as a function of the thickness of each layer, assuming all layers are of equal thickness,

for the layer thickness range of I pm to 100 pm.
Geometrical opticscan be obtained using the following recursive formula for the

addition of every interface (Siegel and Howell, 1992, p.928)

Particle Description
of Transport Piocesses: Classical Laws

we discussed in the previous chapter when we can ignore the coherence effects and
treat heat carriers as individual particles without 

"onrid"ring 
their phase information.

In the next few chapters, we will describe how to deal with energy transfer under the
particle picture. Most constitutive equations for macroscale hansport pro""rr"r, ,o.h
as the Fourier law and the Newton shear stress laws, are obtained undir such particle
pictures. These equations are often formulated as laws summarized from experiments.
In this chapter, we will see that most of the classical laws governing transport processes
can be derived from a few fundamental principles.
:. In chapter 4,. we studied systems ut 

"qriiutrio* 
and developed the equilibrium

distribution functions @ermi-Dirac, Bose-Einstein, and Boltzmann distributions). The
distribution function for a quantum state at equilibrium is a function of the energy of the
'quantum state, the system temperature, and the chemical potential. when tnJ system

, is not-at-equilibrium, these distribution functions are no longer applicable. Ideally, we
. would like to trace the trajectory of all the parlicles in tfre syst.m, as in the molecular

dynamics approach that we wili discuss in chapter 10. This approach, however, is not
realistic for most systems, because they have a large numuei or atoms or molecules.
Thus, we resort to a statistical description of the particle trajectory.

i In the siatistiqal description *, ur" non.quiib.io* astriuution functions, which
depend not only on the energy and temperature of the system but also on positions

:and other variables. we will_develop in this chapter the governing equations for the
inonequilibrium distribution functions. In particular, we will rely on the Boltzmann
equation, also called the Boltzmann hansport equation. From the Boltzmann equation
we will derive familiar constitutive equations ro"i u, the Fourier law, the Newton shear
stress law, and the ohm law we wil also demonstrate that conservation equations,
I

R^73 _ rmrn
Rn+m: R* + T- R:R, rm*n: Tffi,

where the subscript rt refers to the total reflectivity and transmissivity of
first m interfaces (counted from the incident side) and n represents those of
subsequent n additional interfaces. For example, for one layer with two
(the reflectivity and transmissivity at the first interface are .Ri and rl and thosel

at the second interface are R2 and n), the above formula becomes

R"t? rlraRr+r: Rr + -;,& rr+1 : Tffi
I/rnt: one numerical problem with the transfer matrix method for thick

is that the exponential function may biow up. One must find ways to solve
problem for calculating thick films using the transfer matrix method. 227



charged particles, can be obtained from the Boltzmann equation. Special attention

be paid to the approximations made in these derivations, which will be relaxed in the
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such as the Navier-Stokes equations for fllrids and electrohydrodynamic equations

-ARTICLE DESCRIPTION OF TMNSPORT PROCESSES: CLASSTCAL LAWS 229

ensemble

. atFo

Figure 6.1 Phase space, and an ensemble
in the phase space.

such an ensemble never intersect, so that the flow lines in phase space do not intersect

, each other.
' Th" number of systems in an ensemble is usually very large, much larger than the

number of the particles in one system. Because of the large number of systems in one
ensemble, we can treat the points of the ensemble, each representing one microstate of
the original macroscopic system, as forming a continnum in the phase space, just as
we treat atqms or molecules in a macroscopic system as a oontinuous medium in real
space. We define a particle.density ,f(il) such that, surrounding.any point (r(n),p(n);
inthephasespace, wherer(n) : (rl, r.2,...,rx): (r(l). r@,;@,-...,"("j) includes
all the space coordinates of N particles and similarly p(") represents all the momentum

. coordinates, the number of systems is

No. of systems : 1(il)1r,.tn), n(z);Ar(n)4n(n)

chapter when we consider various classical size effects. A discussion is also

in this chapter on thermal waves and their appropriate descriptions.

6.1 The Liouville Equation and the Boltzmann Equation

We discussed, in chapter 4, the probability distribution of an equilibrium

occupying a specific accessible quantum state. Because the system is at

the probability distribution take a simple form. For example, the Boltzmann
depends only onthe energy ofthe quantum state andon the systemtemperature.

occurs, however, only wheh the system is in a nonequilibrium state and

the equilibrium distribution can no longer describe the state ofthe system. Concei

to describe the state of such a noneqtrilibrium system, more information is needed.

this section, we will introduce nonequilibrium distribution functions that describe

states of, systems and the governing equations for the evolution of the

distribution functions. We will start from the general Liouville equation, which
valid for all classical systems but is difficult to solve, and move on to the

Boltzmann equatipn that seryes as the basis for our future analysis. We will also

the assumptions made in the Boltzmann equation and see, consequently, its

Consider a system with N particles, where each particle can be described by
generalized coordinate r and momentum p. For example, the generalized

of a diatomic molecule, 11, include the position (rr, yr, zr), the vibrational
(the separation between the two atoms, Ar1), the rotational coordinates (polar

.azimuthal angles, 91 and g1); likewise, the generalized momentum, p1, includes

translational momenta (mvil, mvfl, murr), the vibrational momenfum proportional

the relative velocity of the two atoms (mdLn/dt), and the rotational momenta

momenta of rotation corrrlsponding to I and p directions). We assume here that

m degrees bf freedom in space, that is, m genenlized spatial coordin ates, and m

'of freedom in momentum for each particle. The number of the degree of freedom of
whole:system is2n :2m x N.These 2n variables form a 2n-dimensional space that

cal\ed a phase space. The system at any instant ca.n be described as one point in
a space. The time evolution of the system, that is, the time history of all the

Now we consider an ensemble of systems-a collection of many systems

the same macroscopic constraints-as We did in chapter 4. At time / : 0,

in the ensemble is represented by a different point in the phase space, as shown

figure 6.1. From classical mechanics, we know that with a given initial condition

trajectory of the system is uniquely determined. Since the initial condition for
systern differs from that of other systems in the ensemble, thg tlaces of systems

in a.small volume of the phase space, 41(n) 4p(r), where Ar(n) : Arr Arz . . . A1,y :
Ar(t)Ar(z) . .. Ar(") and Ap(z) : Apt^pz ,. .Apn : 6pQ) 6OQ) .-.4o(z). 1rys
use superscript (z) to denote the generalized space and momentum coordinates, and
iuperscript.(N) to represent the ly' particles. The particles density in the phase space
',f(lv)11,p(n),n(n); is called 11ts 7g-particle disritution function, which represents
ihe probability density of finding a particular system at a specific state defined by r(n)
ana pt'1. If we assume that the ensemble is ergoiic for all time, this distributiofl function
also.represents the probability ofobserving one system at a particular state 1(n) un6 p(n)
over a period of time (such a time period should be smaller than the characteristic time

in tracing the trajectory,
time evolution of /(N)

LiouviIIe equation, which can be derived on the basis that the flow lines of systems in
ensemble do not intersect. Consider a tube formed by the traces of a set of points (a

subset of systems in the ensemble) as shown in figure 6.1. Since the flow lines do not
rntersect, the points in the phase space are conseryed. we want to derive an equation

the distribution function /(N) based on this conseryation requirement. Recall that
fluid mechanics or heat transfer, we often t'se the control volume method rather than

the trajectory of individual fluid particles. we could do the same for the points in
space and examine a small control volume in phase space, as shown in figure 6.{

or the relaxation time that we will discuss later).
G, rb), p(n)) in the phase space is governed by the



a/(iv) +$;r,r " 
a./tl' *f ;ttr * u/tl' :oAt /_r ArU) z_t' ADV)

, ': where we have ur"6 6;(i)7ar(i) 16 O{i) 16p(t) = 0, which is a result that we will
' in chapter 10 on the basis of the Hamilton equations of motion.

one mole of monatomic gas with 6^: lo" atoms, the number of variables in the gen-
ercEzed phase space is 6 x 6 x 1023, because of the three space and three momentum
coordinates. The one-particle phase space for monatomic atoms, however, has only three
space coordinates and three momentum coordinates. The one-particle phase space can
be thought of as the projection of the l{-particle phase space, similarly L the projection
of a volume in three-dimensional space into the area of a two-dimensiona spuce.

With the introduction of the averaging method to obtain the one-particl. dirttibutioo
function, one can start from the Liouville equation, eq. (6.3), and carry out the averaging
over the space and momentum coordinates of the other (N - l) particies. This proceJuri
leads to (Libotr, 1998)
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dr dp
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The net rate of points flowing into the control volume should equal the rate of
of points inside the control volume. This leads to

the right-hand side is the rate ofchange ofthe points in the control volume. The above

relation can be further written as

systems having generalized coordinates (r(n), n(z); in the ensemble, the one-particle
distribution function represents the number density of systems having (r, p), .'

, f (t, r,p)d3rd3p: number of systems in d3rd?p

This one-particle distribution function features a significant reduction ofvariables. For
i
t:1

f (N) ar(t)
tat

Equation (6.3) is the Liouville equation that governs the time evolution of the
N-particle distribution function "f(N). Th" equation is valid for all classical systems

and has quantum mechanical counterparts for quantum systems (Libotr, 1998). It has a
large number of variables since n is of the order of 1023, that is, the Avoladro constant,

'in macroscale systems. Direct solution of the Liouville equation for nonequilibriurn
systems is impossible, not only because ofthe large number ofvariables, but also
we are hampered by the necessity to determine the exact initial states of the

However, the Liouville equation provides a good starting point for further
The Boltzmann equation, to be discussed below, is one example. In chapter 10, we will
develop another approach for transport problems, the linear response theory based

the perturbation analysis of the Liouville equation.

6.1.2 The Bol?mann Equation

The Liouville equation involyes 2n variables in the phase space, plus time. This
number of variables makes it impractical in terms of the boundary and initial
ditions, as well as for analytical and numerical solutions. One way to simplify
Liouville equation is to consider one particle in a system. This is a representative
having coordinate-r1 and momentum pt; each of the vectors has n components, that
m degrees of freedom. We introduce a one-particle distribution function by
aging the N-particle distribution function over the rest of the (N - 1) particles
the system,

f')(t,rt,orl'-ffi I I f(N) g, r{n), p(n)1dr2. . . dr p dp2. ., dpTs 9.4

, lvhere, again, each vector ri and p; has m degrees of generalized freedom, so

n : rn x N, as we discussed befbre. For a monatomic atom, rn : 3, and for a
atom, m : 6 (neglecting the electronic states). The factorials are normalization

Y,f :5* * 9l + ltdx dy dz

vp/: S* * So" * $6.oPx cJPy dPz- -

unlike the 2n-phase space for the derivation of the Liouville equation, in which one
point represents a system and the flow lines of the points do not intersect, the particle as
represented by the one-particle distribution function interacts with other particles in the
system, and thus the number of particles along a flow line in the one-particle phase space

is no longer conserved. The right-hand side oi eq. (6.5) lumps the inieraction ofthis one
particle with the rest ofthe particles in the sysiem and represents the nonconserving
n4ture of the one-particle distribution function. This scaitering term should not be
considered as a derivative, but rather as a symbol representing the net rate of gaining
p-articlgs at point (r, p). we will give more detailed expressions for the scatterin'g t..ri
in section 6.2.
' Equation (6'5), together with the expressions to be given in section 6.2 b, (#) 

",is called the Boltzmann equation or Boltzmann transport equation. Rather than using
momentunip, we can also use velocity v(p = zlv) o, wov"v"cto. f.fp : n f.iio,"rrit,
the Boltzmann equation as

Af F /Ar\

%+ +
dt ( (6.5)

For simplicity in notation, we will drop the subscript 1

and momenta of the particle. Since /(N)1r, 1(n), p(z);
and use (r, p) as the

represents the number density ff*".v".r+f.*t:( At



particle from

where s is the polarization, if appropriate. When going fromthe summation over

wave vector k to the integration, the factor (2tr )3 comes from the fact that the

of one quantum state in k-space is V I (2n y3

There are two directions in exploring the solution of the Boltzmann equation. One

to solve for / and to calculate the average quantities of interest according to eq.

This approach will be used in section 6.3 to derive constitutive equations such as

Fourier law and the Ohm law, and the Newton shear stress law. It will also be used

the next chapter when considering the classical size effects. The other approach is

take the moments of the Boltzmann equation, from which conservation equations

as the Navier-Stokes equations can be derived.

The above arguments leading to the Boltzmann equation are
I derivation. The derivation of the Boltzmann equation from the

fundamental topic in statistical physics (Kubo et al., l99l; Liboff' 1998). Here it

appropriate to iomment on the range of validity of the Boltzmann equation. We

the one-particle distribution instead of the N-particle distribution function and

that this one-particle distribution function is an appropriate representation of

particles in the system. This will only be true if the N-particle distribution function

' be factorized as the product of the distribution function for each particle, that is,

"f 
(D(r, 

"(n), 
n('); : f(D(t,rr, pt),f(l)(t, rz,p) ....f(t)(1, t", p")
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Boltzmann equation does not include explicitly wave effects such as interference and

tunneling. Extension ofthe classical particle pichrre to the quantum wave picture involves

the so-called Wigner function (Liboff, 1998), which we will not discuss here. Despite

these restrictions, the Boltzmann equation is powerful and can be applied to a wide range

of problems from nanoscale to macroscale.

6,1 .3 lntensity for Energy Flow

The single-particle distribution function / is a scalar in the one-particle phase space.

Sometimes we try to map this and related quantities into the real space r. At each point

in real space, the possible wavevectors lie in all directions. Along each wavevector

direction, the particle moves at the group velocity vs(k) and the energy flows at the rate

of E x vs(k) x l for the speciflc quantum state. In section 3.4.4,we introduced the

differential density-of-states dD(E, k) as

dD(E,k): No. of States within (,E, E f dE) and dQ : D(n)
(6.10)

vdEdQ

where the last equality is valid only for isotropic media. The rate of energy propagating

along this direction per unit solid angle is then

I(t, E,k): E x ue(k)f (t,r,k)dD(E,k)
I, . : iE x u6(k)/(t, r,k)D(E) (6.11)

ln thermal radiation, E : hv for photons, and 1 is called the intensity. Majumdar
(1993) extended the intensity concept to phonons. Equation (6.11) shows that intensity
is a simple transformation of the distribution function. It is usually defined, without
referring to the phase space, as the power flowing along direction S) per unit solid angle,

per unit frequency interval, and per unit area normal to the direction of propagation:

xG)) =+txG,k).f:*7 I*r,k)/d3k

(6.r2)

where dA1 is a differential area perpendicular to the direction ofpropagation.
Comparing eq. (6.12) with (6.11), we see that the solid angle, which is usually

considered as an angle in real space, is actually sustained by the wavevectors in the
phase space. In phase space, intensity is a scalar. Without considering the phase space,

it is difflcult to tell whether intensity is a scalar or a vector- Although the concept of
intensity is widely used in thermal radiation, it is not very cornmon in the treatment
of charge hansport since the major concern is not energy but the flux of charges. In
the following treatment, we will use both / and the intensity, in accordance with the

customs in each field, while attempting to present different carriers in a parallel fashion.

6.2 Carrier Scattering

The key to the Boltzmann equation lies in the description of the scattering terrn. This
term, in its most general form, is a complex multi-variable integral that contains the

Power
I_

" - dAtded,
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Figure 6.2 Collision of two particles with
initial wavevector and energy (k, E) and

(kr , Er ). After the collision, the two
particles are at states (k/, E/) and (ki, Ei).
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where d3r - dx d.ydz means integration over the whole volume of the system and

Mt : titT'lf) = | viu,v,at,

disnibution function, making the Boltzmann equation an integro-differential

that is extremely difficult to solve. The relaxation time approximation is often made

simplify the scattering term. In this section, we will flrst give the general expression

the scattering integral and then introduce the relaxation time approximatioh,

by a more detailed discussion of the scattering mechanisms of various carriers.

6.2.1 Scattering lntegral and Relaxation Time Approximation

We consider the collision process between two particles as shown in figure 6.2. After

collision, the energy and the velocity ofeach particle may change. Clearly, the

is a time-dependent process. The rigorpus way of dealing with the collision

is to solve the corresponding time-dependent Schrtidinger equation for the

system ofboth particles. This approach is, however, usually very complicated and

practical. A simpler way to treat the collision is to use the perturbation method

and Lifshitz, 1977). This method considers the time-dependent interaction between

two particles as a small perturbation in energy, Ht(r, t), from the original

non-interacting energy flo of the two particles, such that the total system energy is

For example, when we use the

H:Hot)+Ht(r,t)
harmonic oscillator approximation for the actual

atomic potentials, the higher order.term Of(xt - x6)31 in eq. (2.51) can be considered

the perturbation from the harmonic potential. In quantum mechanics, we must treat lf
an operator and solve the Schltidinger equation for the two-particle system with the

,ic/, the Hamiltonian of the system, as in eq. (2.22). By lr:eatrng H I as a small

to the unperfurbed Hamiltonian 11s, the solution of the Schrijdinger equation for the

11 can be obtained through the perturbation method and expressed in terms of the

functions V of the unperturbed two-particle system with Hamiltonian I/s. Using

perturbation solution, one can calculate the probability for the system jumping from one

quantum state V; to another quantum state V1, both being accessible quautum states

the original two-particle system. The rate of this transition probability is the

rate and is given by

: 2Al\iltf, 
I f )12 s (E r - E )

:2f uTrdrnr - Ei)

is a manifestation of the requirement! of the conservation of energy. According to
eq.(6'15),6(Et - E;)hasaunitof J-l.Equation(6.13)isoften-rete-neo totheFermi
golden rule. It should be kept in mind that E and E7 are the initial and final total
energies of the two-particle system.

The Fermi golden rule gives the transition rate from one set of quantum states of the
two particles into another set due to the scattering. The scattering term in the Boltzrirann
equation is the net gain of particles in one quantum state. This net gain consists of two
components: one is the increase in the number of particles due to scattering from other
quantum states into the quantum state under consideration (.,in-scattering-); the other
is the decrease of the number ofparticles due to scattering from the current quantum
state to other quanhlm states ("out-scattering"). We again talie the two-particle scattering
process as an example' The initial wavevector of one.particle is k ani it collides with
another particle with a wavevector k1 - The corresponding distribution functions for the
two particles are f (t , r, k) and f (t , ry , k1). After scattering, the momenta of the fwo
particles are k/. and k/, and their distribution functions are f\t,1, k/) and y1t,fr,kr),
respectively. The scattering term for the particle at state k can be .*prrrr"d u,

(6.14)

is called the scattering matrix. The delta function, 3(E f - E;), defined as

kr,k/,ki

+ I fU,r:,kt)f(t,r,ki)w(k',ki + k,k1)
t 1,X',t',

--K f (t,r,k)f (t, r, kr)l'V(k, k1 -+ k/, X\1a34a3U,a3X!,

f (t,r,kt)f (t,r, k'1)t4l(k,, ki --+ k, k;d3k1d3k,d3k, (6.16)

where K : V3/(2r)9 is a factor that converts the summation over wavector into
integration over the phase space. The flrst term represi:nts the rate of particles being
scattered out of quantum states determined by k and k1, and the second term represents
the rate ofparticles scattered into the quantum state. We have used the same r, assuming
that at the point of scattering all the particles are at the same location. This means
that the particles do not have a finite volume. The integration must be done over all

possible particles in the initial itates k1 and counts all possibilities of the final
k/i. For a particle with only translational motion, as we will assume from

kr.',Er'

(Ef E Ei: Ef
EitEt

I
0

dkxdkydkz. Equation (6.16) thus contains a nesting of nine integrals.



k*kr:11+t"
leadtoareductioninthenumberofintegrals.Also,thefollowingreciprocityrelation

w(k, k1 -+ k/, ki) : w(k" k! + k' k1)
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However, the conservation of energy and momentum' which is included in the

probabiliiy, eq. (6.13), and the scattering matrix 
,

E(k) + E(k1) : E(v)+ E(ki)

e of detailed balance' is valid and can be used to
arising from the PrinciPl
eq. (6.16) as

/a/\ = _ K I w xtfG,r,k)/(r,r,kr)
\t/.- "J " ' Lr\1, '

' '

Combining eqs. (6.20) and. (6J), we see that the Boltzmann equation

**"rvp/-ff'ou,At

: -* I * xlf $,r,k)/(r,r,kr)

- f (t,r,k')f (t,r, t<',)la3tra3Ha3H, (f'2

isacomplicatedintegral-differentialequationwithsevenvariables(r,r,k),dueto
assumption of lranslational motion only.

The integral-differential Boltzman equation, eq. (6.21), is verY

general. Most solutions rely on a drastic

relaxation time aPProximation

simplifi cation of ,the scattenng

z(r, k)

where z (r, k) is the relaxation time, and /0 rePresents the equilibrium distribution of

carriers, such as the Boltzmann, the Fermi-Dirac, and the Bose-Einstein

given in chapter 4. The relaxation time approxi-mation is also called the

mation in gas dYnamics in honor of the joint work of Bhatnagar' Gross,

(1954). In chaPter 8, we will go through the scattering integrals more

case of electron-Phonon scattering and show that the approximation is valid onlY

elastic scattering. DesPite this limitation, the relaxation time approximation is

used widely, even for processes including inelastic scattering, with correct

, for most situations.
We can understand the meaning of z easily by neglecting the spatial

of the distribution function. Equation (6.7) becomes

qARTICLE 
DESCRIPTION OF TRANSPORT PROCESSES: CLASSICAL LAWS 237

and thus

f - fo: Qs-tft :-' (6.24)

So the relaxation time is a measure of how long it takes for a nonequilibrium system

to relax back to an equilibrium distribution. Often, the relaxation time is expressed ,.

in terms of the energy rather than the velocity, r : t(E), which implies isotropic

scattering.
The scattering may be caused by the coexistence of different processes and a relax-

ation time can be defined for each procesg. The total relaxation time, 4, can be calculated

from individual relaxation times, z;, according to the Manhiessen rule,

:I I

difficult to solve

integral by

BGK

carefully for

(6.2s)
rj

The Matthiessen rule assumes that the scattering mechanisms are independent of each

other (Ashcroft and Mermin, 1976).

Under the relaxation time approximation, the Boltzmann equation becomes

9*".v""f +I.o",r:-f -fo 6.26)'dt-m-r
where we have used v rather than k as the variable. The corresponding equation

using k as the variable is, from eq. (6.7),

9l F -f-foa; *" V'"f + i"of
Equations (6.26) and (6.27) are also called the Krook equation in gas dynamics

(Chapman and Cowling, 1970). In the rest of this section, we will discuss in greater

detail the scattering mechanisms and the relaxation time of various energy carriers.

t' , 6.2.2 Scattering of Phonons

The derivation of the phonon modes in chapter 3 is based on the assumption of harmonic

interatomic potential. Under this assumption, the lattice waYes are decomposed into
modes which do not interact with each other. For such an ideal case, there is no

to heat flow and the thermal conductivity is infinite. In contrast, real crystals

have a finite thermal conductivity, which is caused by the scattering ofphonons.
In a pure dielectric crystal, the phonon scattering is primarily due to the scattering

of phonons among themselves. Anharmonic force interaction is the source of scattering ,

among phonons. The second-order term in the Taylor expansion of the interatomic
potential around the equilibrium point, as in eq. (2.51), gives the harmonic oscillator
model that we used to represent phonons, By considering the third-order terrn in the

potential as a perturbation-to the oiiginut Hamiltoirian, H' '.' x3, and through the use of
the Fermi golden rule, it is found that this anharmonic force term acts as a mechanism for
two phonons to merge into a third phonon or for one phonon to split into two phonons,
as shown in figure 6.3 (Ziman, 1960). Such scattering processes are called three-phonon'
scattering. The two-particle collision picture shown in figure 6.2 must now be modified
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lhstz

v3=vr+v2

kr,vr

Figure 6.3 Three-phonon scattering processeS: (a) two phonons merge into one

process); (b) one phonon splits into two (creati:on process).

in accordance with figure 6.3, with colresponding changes to the general

integral expressed by eq. (6.20) and the energy and momentum conservation

expressed by eqs. (6.17) and (6.18). For the merging oftwo phonons into one,

conservation gives

h\ I hvz: hvz

and a similar equation can be written for the process in which one phonon

into two.
Momentum conservation during the three-phonon interaction processes takes

kr*kz-kt:G

where the reciFrocal lattice vector G can be zero or a linear combination of the

procal lattice vectors' If (ki * kz) falls within the first Brillouin zone wavevector,

G = 0; otherwise, G # 0 (figure 6.4). The latter result comes from the

that the phonon wavelength cannot be smaller than the lattice constant, as

in chapter 3. The G : 0 phonon scattering process is called the normal process

the G I 0 is the umklapp process. Without the umklapp process' the thermal

ductivity of a crystal would still be infinite bbcause in a normal scattering

the generated third phonon preserves both the energy.and lhe direction of
original phonons. The extra reciprocal lattice wavevector in the umklapp process

the net direction of phonon propagation and thus creates resistance to the heat

Instead, approximate expressions for the relaxation time, based on eq. (6.20), have

developed (Klemens, 1958). Forexample, an often-used expression for the

umklapp process is

x;r - 3s-?o/brT3a)2
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Figure 6.4 Three-phonon
(a) normal and (b) umklapp
scattering processes, using the

. merging of two phonons into one
as an example. The gray region

fepresents the first Brillouin
zone. In the umklapp process,
k/r, which is the sum of k1 and
k2, is outside the first Brillouin
zone. It is brought back into the
first Brillouin zone by the
reciprocal lattice wavevector G.
Energy must be conserved
during both scattering processes.

The normal processes in (a) do
not create therrnal resistance
because the merged phonon
carries the same amount of
energy and momentum as the
original two phonors. Umklapp
scattering causes thermal
resistance because the monenta
of the two original phonons are
changed after scattering.

ttr : A'a (6.31)

P-oql{*y scattering is also sometimes included in the total relaxation time, using the
Matthiessen rule. The relaxation time due to boundary scattering is of the order of

rul : bru/L G..32)

where .L is a characteristic length, such as the diameter of a circular rod for heat

where B and b are constants and 0p is the Debye temperature. The values of
for different materials can be obtained by matching the model predictions for
conductivity with experimental results, as we will see later.

B and
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Phonons cannot be acted upon by external force'

approximation, the force term in eq. (6.27) drops out in the

cally much weaker. An electron can create or annihilate a Phonon in

process, and must obeY the energy conservation and momentum conservation during
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wherq we have used

.af,-\7 t_-, r. v. vrjr : u-
d.s

s is the distance along the direction of propagation and u is the speed of light in the
The term V1/ in the Boltzmann equation forphotons drops out becausephotons

do not interact with external force. The elastic scattering term can be obtained from
solving the Maxwell equations. A familiar example is the Mie scattering theory, which
represents the full solution of the Maxwell equations for a plane wave inJeracting with
a spherical particle with given optical constants (Bohren and Huffman, 1983).

: As mentioned before, for thermal radiation it is customary to use intensity rather than

the distributibn function. Using the intensity notation, eq. (6.37) can be written as

0h_ Iv-l,o,l/41,\
ar:- .l:*r(",1",",".,,. (6'38)

where A : ur is the photon inelastic scattering mean free path, and Ig is the blackbody
radiation intensity, as we have proven in chapter 4. Here we have added the subscript u

to denote that the quantities are frequency dependent. Using the terminology thatis more
frcquently used in thermal radiation, the absorption coefficient is the inverse of inelastic
scattering mean free path,

114nrc
N __ ___J" A ur .l.o

where the tast equality is the expression we introduced in eq. (5.40) and is valid only
for a homogeneous medium with r as the imaginary part of the complex refractive
,index. For other systems such as a system with particulates, the absorption coefficient
can be obtained from solving the Maxwell equations (Bohren and Huffman, 1983;
Siegel and Howell, 1992). The elastic scatterintterm is also divided into two parts: the
outgoing scattering, which is proportional to the scattering coefficient, and the incoming
scattering,

(6.40)

where @ is called the scattering phase function, representing the fraction of photons
scattered from direction Q/ to Q per unit solid angle of the incident direction. The
integration in eq. (6.41) is thus the total radiation scattered into the Q direction. The.

lnal equation, which is called the equation ofradiative transfer, becomes (Siegel and
Howell, 1992)

Under &e relaxation
phononBoltzmann

6.2.3 Scattering of Electrons

Electrons are predominantly scattered by phonons. Electron-electron scattering is

process. For aPhonon creation process, ihe energY and

Ei:Ey*hvp

k;:k1+kp+G
energy and wavevector of

momentum conservation rules

the created Phonon,whete hv, and ko are the

Again, the process can be a normal or an umklaPP one, depending on whether G :
or not. In most cases, the dominant scattering process has G : 0'

In metals, at temperatures higher than the DebYe temperature, the number

phonons is proportional to temperature T, as the temPerature independent specific

suggests. The more Phonons, the more chance that the electron will experience

tering by phonons; consequentlY, the electron-phonon relaxation time is (Ashcroft

Mermin, 1976)

Scattering in s6miconductors is more complicated and one must determine

the scattering is;caused bY acoustic or optical phonons. The optical phonons can

further divided lnto nonPolar, such as in silicon and germanium' or polar, such as

gallium arsenide (GaA$' In chapter 8, we will discuss in more detail the

phonon scattering in relation to energy exchange mechanisms. ImPuritY scattering

semiconductors is also a verY important mechanism.

Hess (2000) for a more detailed discussion of various

6.2.4 Scattering of Photons

: Photon scattering is often divided into two parts: the inelastic and the elastic

In the inelastic process, photons are absorbed or emitted' The absorption coefficient

often used to represent the process. Under the relaxation time approximation,

scattering that includes absorption and emission of photons can be exPressed

(6.3e)
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where the extinction coefficient, Kev : dv f o"r, combines absorption and

scattering into an extinction term.
Although the equation of radiative heat transfer, eq. (6.42), looks quite

from the Boltzmann equation, eq. (6.21), the above explanation illustrates that it
come from the Bolzmann equation. This point was exploited

who transformed the phonon Boltzmann equation into a form
equation of radiative heat transfer by introducing phonon intensity. We see that

analogy is natural because all of these equations originate from the Boltzmann

tion. For electron transport, the intensity concept is not customarily used,

it can be similarly introduced, not in terms of the energy flux but in terms of
particle flux.

6.2.5 Scattering of Molecules

In eq. (1.37), we gave the mean free path between successive collisions of
molecules as

A- m,.*.-
J2npdz

where d is the molecule diameter, nr is the molecular weight, and p is the density.

the mean free path, the relaxation time can be obtained,

I u {Znpudz
zArn

where D is the average speed of the molecules,

and /s is the Maxwell velocity distribution given by eq. (1.26).

6.3 Classical Constitutive Laws

Using the Boltzmann equation under the relaxation time approximation, we can

tigate the transport of energy carriers. We will show in this section that.classical

such as the Fourier law, [ie Newton shear stress law, the Ohm law, and.so on, are

solutions of the Boltzmann equation under the assumption of local thermal

The limitations of this assumption can be appreciated through the derivations. .

Consider the Boltzmann equation under the relaxation time approximation, that

eqs. (6.26) and (6.27). Let us introduce a deviation function g,

s:f-fo

,: I I I,ro@dtu,du,du,:
.0 0 0

and write eq. (6.26) as

0s.0fo -' F
:: + -l *v o V1/g *v o V"g * - . V".fo
UAtrn
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AII the difftrsion laws can be obtained under the following assumptioni: (l) the transient
terms are negligible; (2) the gradient of g is much smaller than the grudi.nt of /s; and
similarly' (3) g is much smaller than /e. under these assumptions, eq.6.aT becomes

e: -t (". o^ + f . nn) (6.48). :. I

f : fo- " (" 
. v".fo * *. or^) (6.4e)

This solution for the distribution function can also be obtained by treating g as the first-
order expansion of / (/e is the 0th-order expansion) and neglecting highlr"order terms.
The Boltzmann equation thus obtained is said to be the linearized Boltzmann equation.
From the distribution function, we can calculate the flux of various quantities of interest
(charge, momentum, energy). we will narow our focus next to examine some of the
fluxes associated with various carriers.

trVe first consider the heat conduction by phonons. In this case, there is no external force.
Since the Bose-Einstein distribution

,- I
tu - *@rpr71- 1

:

depends only on temperature, we can write eq. (6.49) as

,fG, k) : fo - rffv.vr
I'

where z is a function of coordinate r, i.e., T (t, r). we have dropped the subscript r in
the gradient operator. The nonequilibrium carrier distribution depends on both r and v.
' 

_ 
For simplicitS we consider a temperature gradient along the x-direction withouGss

of generality. We can calculate the heat flux from

(6.s0)

(6.51)

oo oo

v (6.s2)
&rl=-oo ftyt:-oo ftzt=-oo

Where s represents the summation over all polarizations. It is interesting to compare
this expression with eq. (5.152) which we used in deriving the Landauer formalism. In
eq. (5.152), we are considering only the heat flux golng from point I to point 2 but

also exists a reverse heat flux from point 2 to point t. In eq. (6.52), we ue
the netheat flux at any constant.r-plane inside thedomain. There are c€IrIfers

across the plane in both directions, as determined by eq. (6.51) and skerched in
6.5. Following a similar procedure to that used before, we can transforrn eq. (6.52)

into an integration over all wavevectors and then into an integration over energy
solid angle, using a spherical coordinate system for the wavevectors as shown in
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Figure 6.5 ln the calculation ofheat flux at a

constant.x plane, carrie.6 moving in all directions

may contribute to the net heat flux in the "r-direction,
depending on the velocity component u: of the

carriers. Note that we align,Ll parallel to x, but the

k-sPace origin is located at r'
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with the following expression for thermal conductivity

) da (6.56)

(6.58)

where A : zu is the phonon mean free path.
Our previous discussion suggests that the relaxation time is highly frequency

dependent. On the basis of the Mathiessen rule, and considering the following phonon
icattering mechanisms: (1) phonon-phonon umklapp scattering, (2)

and (3) phonon-boundary scattering, we have

1f'i, k:: I tuzc,da (6.5j)5J

In the case that both z and u are independent of frequency, the above expression reverts
to the kinetic relation, eq. (1.35), that we obtained in chapter l,

t-K

oo oo oo

I;Jk CuIt

where al** represents the highest

the Debye model. Sirbstituting eq.

Jnrk)

phonon frequencY, such as the Debye frequencY

(6.51) into the above equation, we obtain

tdT
da

dfo

dT
d0

We see that the first term /6 in eq. (6.5 1) naturally drops out of the integration. This

because /6 represents the equilibrium distribution and it contributes an equal amount

energy going from left to right as in the reverse direction. Equation (6.54) can be

asthe Fourier law

(6.s9)

we cautioned before that our treatment of boundary scattering is very crude and
be taken as a rough approximation. Substituting eq. (6.59) into (6.57), we obtain

qn,expression to calculate the thermal conductivity. There are three unknown parameters,
A, B and b,since &, can be modeled (Berman et al., I 955). These parameters

be determined from fitting eq. (6.57) with experimental temperature-dependent
copductivity data. In figure 6.7, we show a fit of the thermal conductivity of

(Chen and Tien, 1993). The thermal conductivity of a crystalline solid typi-
shows a dome shape with a peak around 20 K, depending on the size of the

::T*Ao.a+Be-oD/brT3a2

At high temperature, the dominant scattering mechanism is due to phonon_
scattering and thermal conductivity is approximately inversely proportional to

I
k o A (6.60)

practice, the high temperature dependence is often T. n with n : I - 1.5. At low tem_

:'f,^ o,U 
II 

u cos ohal^ -'##,.o, e]
D(') 

sineae4r

2dx I
0 0

Figure 6.6 Polar coordinates for the momentum

components. Note that we align the momentum and

space Cartesian components in the same direction'

phonon-boundary scattering dominates heat conduction. Thermal conductivity
proportional to specific heat and also to the size of the crystal (Casimir, 193g),dT/dx
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to2

l0 l0 to3

TEMPERATI,]RE (K)

Figure 6.7 Thermal conductivity of GaAs, based on a model that considers phonon

sion and contributions from different phonon branches, kio from low-frequency

phonons and fr1a from high-frequency ones, and ft; from longitudinal phonons

Tien, 1993).

modeling.
Rather than being a convenient way of calculating thermal conductivity, eq' (6.5

is often used.to estimate the mean free path on the basis of the exPerimental values

thermal conductivity, the specific heat, and the speed of sound in a

of estimating the phonon mean free path, however, usually leads to an

of the mean free path for those phonons that are

g'
6

E,o,
?*

U

Az
I too
,t

ilo
F

o
A et al. (1965)

(1964)

the following reasons (Chen, 2001a):

actually carrying the heat because
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1. Phonons.are dispersive and their group velocity varies from the speed of sound
atlhe.Brillouin zone center to zero at the zone edge. The un"rug"-phonon group

, velocity is much smaller than the speed of sound. - ' 
.,

2. Opncal phonons contribute to the specific heat but typically contribute little to heat. flux, due to their low group velocity and their high siattering rates.
r. 3. Phonon scattering is highly frequency dependent. High-frequency phonons are

usually scattered more strongiy than low-frequency phonons.'

For example,, the simple kinetic theory based on eq. (6.5g) leads to a mean free path
for silicon of -410 A. More careful consideration oi ttr" ptronon dispersionlo optica
phonons (chen, 1998) and experimental results (Ju and Goodson, iggs) indicate thar
the mean free path of those phonons actually carrying the heat is -2500-3000 A, much

longer 
than what simple kinetic theory would give.

6.3.2 Newton's Shear Stress Law

derive the Newton shear stress law for gas, we again consider a one-dimensional flow

(Chen

material. This

P (u', u y, r r,, : (# *)t'' r- ^u', - u)z +t3 +4t / 2K a r (6.62)

,where z. is the average velocity along the r-direction. on the basis of this dishibution,
can be shown that the average velocity is indeed u (this is left as an exercise). Assum-

that the number density of particles is n, the number density of particles having
Yrs

Figure 6.8 One-dimensional
laminar viscous flow for deriving
the Newton shear stress law.
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From eq. (6.49), the distribution function is

urVnu,)f du, du, du,

,rj*r,ffar, d.u, du": p#

where mu, is the momentum of one particle along the x-direction and the ur(mvr)

represents the rate of momentum change along the x-direction due to the flow

molecules across the constant y-plane. Such a rate of change of momentum

the shear force acting on the constant y-plane, according to Newton 's second law

dynamic viscosity is
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the shear stress we examine the momentum of the carriers, whereas for heat conduction
we examine the energy ofthe carriers. Relationships as such are often found between
kinetic coefficients. We will see similar relations in the next few sections between the
electrical conductivity and mobility, the electrical and thermal conductivity ofelectrons,
and the Seebeck and Peltier coefficients.

. Equations (6.67) and (6.68) for viscosity and thermal conductivity are obtained on
the basis of the relaxation time approximation. Enskog and chapman, independently,
solved the Boltzmann equation in its integral form (chapman and cowlin g, tglq av
series expansion of the distribution function. The final results for the viscosity and
thermal conductivity for gas molecules,'approximated as elastic spheres, are (Vincenti
and Iftuger, 1986) :

'roN

,rr= I I I
-oo -oo -co

.moo@

:-Y,I"I!

p: - I I I',11*u')afr;av,d'urdu,

6.3.3 Ohm's Law and the Wiedemann-Franz Law

Having considered phonon and molecule transport, let us turn our attention now to
electron Eansport. We first limit our consideration to electron flow in an isothermal
conductor driven by an external electric field. The force acting on the electron from the
external fleld is

F - -:e E- eYee (6.6e)

LL:
tltKBT

l6d2 T

f : fo-r
where /,s obeys the Fermi-Dirac distribution

fo(E, Et,T):

(6.68a)

(6.70)

(6.71)

where e is the unit charge, the charge of an electron is (-e), Eis the electric field, and
g, is the electrostatic potential that is related to the field by E : - vpr. consider the
one-dimensional case with charge flow in the x-direction due to a field of m agnrnde E
Substituting eq. (6.69) into 16.49), we have

(2rnT) u'3 -^,il'112*pr1
KBT

-oo

Efo e

0x m 0u, )
In the last equation, we assume that the relaxation time is aconstant

Carrying out the a-bove we obtain the following expresslon for the

In writing the last step, we have used the mean free path expression I

t : Itllu), where the average speed of molecules is (u) - l8rc6T/

*p(ffi-) +r

^ 
Here we are using E1 to represent the chemical potential. In chapter 4, we used E7

for the Fermi level and pr, for the chemical potential, but in this chapier p is used for thl
dynamic viscosity. Sometimes the distinction between the Fermi level and the chemical
potential is not rigorously made. In electrical engineering, chemical potential is usunlly
called the Fermi level. To calculate 0fs/0x in eq. (6.70), we should be careful where
we place the reference for E and E y .'rn asemiconductor, the conduction band energy
ts tEq. (a,60)l '

x2E: E,* *<e +ktr+k1), ztn^

where E" is the location of the band edge. If we choose a co[lmon flat reference point
for E", Ey, and E, such as shown in figure 6.9(a), it is clear that all three qu*iiti",

in example l.I: ,l

Following a similar procedure, we can also calculate the energy flux due to

heat conduciion and obtain the thermal conductivity for a gas as

5 KB

Thus the thermal conductivity and viscosity are related to each other, because all

quantities arise from the same microscopic carrier motion. The diffeience is that
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(6.74)

Because of its simplicity, we will choose figure 6.9(b) as the reference system in our
subsequent derivations. The end results are independent of the reference system. In the
chosen reference system

dEr _ _SfodEt

Figure 6.9 Choice ofreference level for
E7 and E.In (a), 81, E6,and E are

relative to an absolute reference level.

In this case all three quantities are

;r-dependent. In (b), E1 and E are

relative to Es a\d E. is relative to an

absolute reference level. The arrows

in the dashed lines mark the reference

Point of the quantities.

G)

.0x
and eq. (6.70) becomes

f - fo*r

- fo*tut

0E1 dx 0E dx

)
bo

c
F]

( (6.7s)
Ea

o

Ineq. (6.74), we used the relation Af lAEf : -Af /AE. The current densiry (Am-z;
is then

@

J"- v ftz:-oo fty:-oo.tz: o

:--
(2r)3

eu, f dk* dky dkz

.oo oo. oo

-€ -oo -ooIn this reference system, Ey is actually the sum of the chemical potential (E1 -
and Er, that is, Ey : (Ey - Ec) + Ec. The bottom of the conduction band E"

related to the electrostaticpotenttalg" from the relation between force and potential

electrons with a negative charge)

Thus, -Ecle is parallel to the

Note the difference of the "potentialT used in electricity from what we normallY

the potential energy. The sum of the electrostatic potential g" and chemical

(divided by charge) (E t - E") I ?e) is often called the el e c tro chemic aI P otential, Q,'

O:ee-(E;y-E)le--E7le
.

Thus, in areference systemas shownin figure 6.9(a), E 7 itseuincludes both

relative to E" while E" refers to an absolute potential level. This reference system

the advantage that E y always represents the chemical potential and E is

of r. This can also be seen from eq. (6.71), if we write (E - Ey) in the

distribution as

h2: E.Ef :(E- E,)-(Er- E"):#(4+nj+kb-@t - E")

Under this reference, the electrochemical potential is then

: O--(Er*E)le:p"-Eyle (6.

- dE dE, dQ": 'a-

electrostatic potentinl. 'We can usually take 9,

dEr
dx

*"41 ,,,o{n1ffan: t o.9l ,*rrrr#0,

:-# Il[u'( 4#'-'"1
(6.76)

from eq, (6.76) that the driving force for current flow is the electrochemical potential,
nbt just the electrostatic potential alone. Because the chemical potential is related to
the carrier concentration, the chemical potential gradient is representative of the ca:rier'concentration 

gradient and the current due to the chemical potential gradient is thus
the diffusion current. In metals and semiconductors, the relative importance of the
two terms in the electrochemical potential is different, so we will disiuss mekls and
semiconductors separately.

6.3.3.1 Metals

electron density in metals is very large, such that the transport does not affect the
phemical potential since the chemical potential is a measure of the electron number

(

76) becomes

'.2r:
J"=-\Elu2r

3Jwhere we have taken g" : -Er/e

density. Equation (6.

afo

AE
D(E)dE: o E
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where o is the electrical conductivity' Equation (6'77) is the Ohm law' The electrical

conductivity is

, = -+ | *'ffr<r)dE: 111

where I r r is a notation to be used later. Because 3/s/ 0E is zero everywhere excePt

to the chemical potential or Fermi level, we can use a delta function to aPProximate it;

AfolaE = -6(E - Ey) Equation (6.78) becomes

where subscript F rePresents

^ - 
trDre2uZo

J

the values at the Fermi

metal actuallY ParticiPate

level. Equation (6'79)

in carrying the curent.

those close to the Fermi level are actively contributing to current flow. From eq. (3

we have

so that

neZ
o:-TF
'fn

In the above derivation, we have used the relation E I : muzr 12'

6. 3.3 : 2 Semiconductors

For transport in semiconductors, the carrier concentration changes with position

thus the chemical potential is not constant' We can start from eq. (6.70) to

eq. (6.76) as

that not all the electrons in a

i The first term repiesents current flow caused by the electrostatic field and the
' ' I I 

term arises from the concentration gradient. Equation (6.8 I ) is often written as

Dhn\ 0n
Je: €nl-Leg+ eff x enl'Le8+ ea *

where p, is called rhe mobility [m2 y-t 5-t1 and a is the dffisivitY
" approximation is valid only when the diffusivity is independent oflocation (Hess,

The latter expression in eq. (6-82) is called the drift-diffusion equation. The

field causes the drifting of electrons while the concentration gradient drives the

of electrons. The product of the mobility and the electric field

u4 : lJ's E

(6.78)

close
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defines a velocity which is called the drift velocity. It is the average velocity that the

electrons gain under the external fleld. Equation (6.83) is often used as the definition of

mobility (Sze, 1981). Because the drift current density is equal to ena1, the electriqal

conductivity is related to mobility through

. : 
o:€llLle

For semiconductors, because the carrier concentration is not fixed, the mobility is a

measure of the mobile properties of individual electrons and thus is more useful. From

eqs. (6.81) and (6.82), we can write the following expressions for the mobility and the

diffusivitY

(6.8s)

_ tr If, uzrfoD(E)dE rcnT
& 

-1.t"
(6.86)

[tr foD(E)dE

wherc t^ is called the momentum relaxation time and the approximate relationship

between the diffusivity and the mobility, eq. (6.86), whichls valid only when the

distribution function obeys the Boltzmann distribution, is called the Einstein relation,

6. 3. 3. 3 Wiedemonn-Franz Law

The thermal conductivity of electrons can be derived in a similar manner to the derivaiion

for phonons. Assuming no current florv, the thermal conductivity due to electrons can

be expressed as

(6.87)

where rg is the energy relaxation time of electrons and is an average of z weighed
against the energy ofthe electrons, and C, is the volumetric specific heat ofelectrons.
f,E represents the average time for an electron to lose its excess energy. In general, the

energy relaxation time can be different from the momentum relaxation time. fpically,
however, the two relaxation times are very close. From eqs. (6.80) and (6.87), and

k" = !c"r2o"r

the difference between the relaxation times, we get

r:9:## :t (ry)' :2.45x ro-8(woK-2) (6.s8)

[*2 r-1].

we have used the specific heat of metal obtained in chapter 4, eq. (4.71). This is
theWiedemann-Franzlaw and I is called the Lorentz number. Many metals obey

depends on doping, but the magnitude of the Lorentz number remains close to the

The Wiedemann-Franz law is often used to estimate the electron contribution
thermal conductivity. For metals, it is sometimes used to calculate the thermal

directly from the electrical conductivity because electroirs are the dominant
:

(6. carriers in most metals.
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6.3.4 Thermoelectric Effects and Onsager Relations

ofeither uniforgt
let's examine the couPling

the temperature gradieirt with the electric field. In this case, both the Fermi level

temperature are functions of location, and }fsl0x can be expressed as

Sfo }fo dEt E - Et 1fodT

Ox- AE dx T 0Edx

Substituting the above equation into eq. (6.?0) and further into eq. (6.76), we obtain

E-Et
T

da
-Lt *Ln

where 211 is the electrical conductivity as given by eq' (6'78), and ltz is the

coefficient between current and the temperature gradient l
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Equation (o.93) can also be written as

(Oz-@r):S(Tz-T):-V

where V is the voltage drop measured from point 2 (hot poinQ to point I (cold point).
thus, in a conductor or semiconductor, a temperahrre difference generates a voltage
di_fference. Physically, when one side of the conductor (or semiconductor) is hot, elec-
trons have higher thermal energy and will diffirse to the cold side. The higher charge

concentration in the cold side builds an internal electric field that resists the diffusion.
The Seebeck voltage is the steady-state voltage accumulated under the open-circuit
condition. If the conductor is a uniform material such that ,i is constant, the voltage
difference does not depend on the temperahue profile. This is the principle behind the
thermocouple for temperature measurement. A thermocouple employs two conductors
forease of measuring the voltage difference. The same effect can also be used forpower
generation. We will present more discussion in chapter 8 on thermoelectric effects for
energy conversion applications (Goldsmid, 1986).

We can also examine the heat flow when temperature and-voltage gradients coexist in
the conductor. when calculating the heat flow, we must carefully distinguish the energy
flux from the heat flux because we are treating an open system with particles flowing
across the boundaries. Consider a small control volume of fixed.volume. The first law
of thermodynamics should be written as

dU:de*Eyd.N

In terms of energy flux, the above equation can be expressed as

dJq=dJr-ErdJ,

where Jn is the heat flux, Ju the energy flux, and Jo the particle flux. Considering again
one-dimensional flow along the r.direction, these fluxes can be expressed as .

l:=-;l*"( +

(6.e6)

(6.e7)rrr:# !rzr<n-n9ffiogan
The first termin eq. (6.91) is the normal electrical conduction due to the

potential gradient. The second term arises from the thermal diffusion of electrons

a temperature gradient. Under an open circuit,

dA LPdT

equation (6.91) leads to

dT
:SE

where S N f-t1 is called the Seebeck cofficient, defined as

...': -dAldx Lnc:+:-- dTldx Ln

t Iuzr(E-ni#o(Dan___-eT t uzrfloplaz

where the negative sign arises because we are dealing with elecftons. Simitar

forholes wouldlead to a positive sign. This expression shows that the Seebeck

is a measure of the average energy of an electron above the Fermi level under the

circuit condition, weighted against the differential electrical conductivity at each

level. As we will show later, (E - E ) is related to the heat carried by an electron

(E - E fllT is related to the entropy. Thus the Seebeck coefflcient is a measure of

average heat current carried per electron.

dx Ln dx so that the heat flux along the.r-direction can be calculated from

(n - niu,fdu*durdu, (6.ee)

Substituting eqs. (6.70) and (6.89) into the above expression and following the same
as w€.used for the electrical current, we obtain the following expression for

heat flux

,n: I Eu,fdu,durdu, antd. Jn: f v*f du"dvrdu, (6.98)

rq: Lzr(r.:#). r,(-#) (6.100)

first term is the energy carried due to the convection of electrons under an electro-
chemical potential gradient, and the second term is due to the diffusion of electrons

temperature gradient. The expressions for the coefficients are

TLn

under a

(6.101)
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Figure 6.10 Coolingor
heating at the junction of two

. materials occurs because of
the difference between the

Peltier coefficients of
the two materials.

^tr---Js

(l:J"(ilr-tr2)

and

where
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-*Qfl-""(#)-r"#
d

T (6.10s)

n [JK-1] is called the thermal conductivity,

The relationship between the Peltier coefflcient and the Seebeck coeff,cient is one ofthe

Kelvin relations.
Equation (6.103) shows that in addition to the normal heat cbnduction by electrons,

the charge flow also carries another heat that is proportional to the current. When

materials are joined together and a iurrent passes through the junction,

dT

In the above derivation we have used eqs. (6.91), (6.103), and (6.104). In the last

equation, the second term is due to heat conduction and the third term is due to Joule

heating. These two terms are quite familiar in a heat conduction equation. The first term,

however, is not familiar. It shows that heat can be absorbed or release{ depending on

the current direction. This reversible heat absorption or reiection is called the Thomson

effect. The Thomson cofficient N f-t1 is defined as the rate of cooling

' u:n/('"#):r#
where the negative sign in the first term of eq. (6.105) does not appear because a positive

Thomson effect is based on cooling whereas q is the heat generation. Equations (6.104)

and (6.106), relating the three thermoelectric coefficients, S, II, and p, are called the

Kelvin relations.
Throughout this section, we have seen that the transport coefficients are often related,

as for example in the Kelvin relations between the thermoelectric coefficients and the

Einstein relation for the electrical diffusiviry'and the mobiliry. The fact that many of
these coefficients are related has a more profound origin than a result from the Boltzmanir.
equation. It is a requirement of the "time reversal invariance" of the mechanical equations

,of motion, that is, the particles retrace their former paths if all velocities are reversed.

On the basis of this principle, Onsager (1931) derived the famous Onsager reciprocity
relations. Here we.will give a brief explanation of the reciprocity relations without
proof (Callen, 1985). The flux of any extensive variable of a system (such as energy
flux, particle flux) or at a local point of a system can be Expressed as a linear combination
of all the generalized driving forces Q,

t1,:lLy\ (6.107)
j

where Li* are called the kinetic coefficients. The generalized forces are the driving
forces for enfropy production. The Onsager reciprocal relations are

Lit,=Lti (6.108)

Forlocal thermoelectric transport, the generalized forces are V (1/ Z) forheat flow and

eV q / f for electrical current, which leads to a relation between the two coefficients
Lpandl2l as givenby eq. (6.101)

Example 6.1

The relaxation time usually depends on the electron energy as- r - Ev , wherc
r differs among scattering mechanisms for electron transpo rt (y : - I /2 for acoustic
phonon scattering, | : I 12 for optical phonon scattering , and y :3/2 for impurity
scattering). Derive an expression for the Seebeck coefficient of a nondegenerate

semiconductor.

':
I ^, Lrc Ltt

fl : "" :TSand k: Lt.t-': -'
Ln -- -':-- Ltt

Peltier cofficient wtd ft is the electronic

(6.104

be supplied or rejected at the interface becausb of
coefficients of the two materials, as shown in figure

or rejected (q < 0) is

the difference between

6.10. The energyabsorbed(q >

q:(l|z-lI1|J"

depending on the sign of q. The rejection or absorption of heat depends on the

direction and therefore, unlike heat conduction, the Peltier heat is reversible' This

has been used to make thermoelectric refrigerators and heat pumps (Goldsmid' I
A third thermoelectric effect, the Thomson effect, refers to reversible heating

cooling along a conductor when both a current and a temperature gradient

to the conductor. The energy deposited inside a differential volume

ductor includes contributions from the heat flux variation and.the

potential drop, l
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Solution: A nondegenerate semiconductor is one with the Fenni leyel inside
bandgap. In this cai, the Fermi-Dirac distibution function can be approximated
the Boltzmann distribution

Let's consider one-dimensional phonon transport as the case for sfudy and neglect
the force term. we can transform the above expression by considering ttre errergy nux
of the left- and right-hand sides:

Substituting (86.1.2) and the relaxation time into eq. (6.94), we obtain the
coefficient as

D(E): +,,(T)'''

:-71-#-('.;)]

FvoVr;fg*-.V".fo. .m

D(a\ 'l
-#dal dQ4rJ

where we have used 4z under the integral to denote that the solid angle integration is
bveralldirections Eq.(6.lll)yanbewrittenas "

A.l- 
^T,i * rq: -k* 6.trz)

where 7 is a weighted average of the relaxation time relative to the heat flux expression.
Equation (6.112) is the cauaneo equation (cattaneo, r95g; Joseph ana neziosi, tqgg;
Tammaandzhou, 1997). Combining this equation with the energy-conservation equation
(no heat generation considered)

}Jo aT
-1:: P6-dx At

D(r't)

:1U,,,,
4n

(6.1 13)where E1 is the chemical potential, which can be controlled by doping,
eq. (4.64) (E" : 0 for the reference system here), we can write the
equation as

Comment. The value of rcsf e is 86 pVK-I, which gives an idea of the order of
magnitude of the Seebeck coefficient in many materials.

6.3.5 Hyperbolic Heat Conduction Equation and lts Validity

as the Fourier law, is that the transient effect on the distribution function is negligible,

"{ uw.Y;y
This will be valid if the variation of the distribution function in the time scale is

smaller than the variation of the distribution function in the length scale. Now, let's
this approximation but still make the assumption that deviation from spatial
is small. Equation (6.49) becomes

and eliminating Jo, we arrive at the following governing equation for the temperature
distribution

i# *T-: Ltl 614)|tz At pc \xz

Trisis ahyperbolic typeof.equation, or telegraph equation. It differs from the paraboric
heat conductiof 

lguation obtained under the Fouriei law, eq. (1.19), by addin! the first
'term on the left-hand side. The parabolic heat conduction 

"quuti* 
i*plies"that if a

temperature perturbation is applied at the boundary ir *il' ;" il;;;";;'i;;;, *hr;;;;
the 

thole regron (the temperature rise at infinity may ue t"iltdy;;; j,iiit 
ts ,tin

not absolutely zero). The hyperbolic heat conduction equation oveicomes thi, al.m*u
since the heat propagation is in the form of a wave and the temperature .ir. i, ;;" ;;
the other side of the wave front. The solution is typically r d;d;;;;il;;;;
existence of the second term on the left-hand side. In addition to the cattaneo equation,
thellare.ats.o other accepted modifications such as th" i"ffr"yr;;; ililu;;iil*t
and Preziosi, 1989),

-0q .. AT A / AT\,i * q: -k; - ro,; \*) (6.1rs)

wfrere k1 is another phys!3lproperty similar to thermal conductivity.'; we comment here that although these equations can overco*" ,t . iit.*-a of infinite
gpeed of Fourier's heat conduction equation, neither shouril;;k;;;;;lary uppti
gabl9. There are many mathematicar studies on the solution ortr" rrypeirliiciyp" orneut

* f : fs-t
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Figure 6.1 1 Local distribution / under the local-equilibrium

distribution deviates slightly from the equilibdum distribution /g'
The difference between f and fg, that is, the arrowed area, is the

driving force for the heat and cunent flux'

conduction equation with various boundary conditions, but

the observation of hyperbolic heat conduction. Most of the

conditions that are difflcult to realize in practice. This is because

heat:transfer process is typically confined in a very small

of small deviation from equilibrium in space is no longer valid'

resort to the Boltzmann equation (Majumdar, 1993) or to other

the ballistic-diffusive equations that take the spatial deviation

into consideration (Chen, 2001b). Although there is also

wave type of response in different media, these.are mostly caused

between two fluids such as electrons and phonons (Qiu

solids and liquids in porous media.
Thermal waves in dielectrics have been observed experimentally (Landau, 1941;

Ackerman et al., 1966; Narayanamurti and Dynes, 1972) andare

for the hyperbolic heat conduction equations. These thermal waves can

under special conditions when the mean free path of the

compared to the specimen size and that of the nonnal scatte-ring Process is

short (Guyer and Krumhansl, 1966). In this case, heat

of u / J5; this speed is called the second sound. In section

detail the origin of the second sound. It will be seen there that the second sound

be attributed to the approximation made in eq. (6.110).

in a transport process dominated by normal scattering, the

be replaced by the displaced function, as in the displaced

in section 6.3.2. Thus it is justifiable to say that the hyperbolic heat conduction

as derived in this section, cannot be used in most situations

6.3.6 Meaning of Local Equilibrium

From the derivation of the classical constitutive laws, the meaning of local

that underlies all these relations becomes clear. From eq. (6.47) to eq. (6.49) we

that the deviation of the distribution function from equilibriumis small, such that the

distribution function can be represented by its equilibrium value

ation term that is proportional to the local gradient, as implied by eq.

the loqal equilibrium is not equilibrium at all. In figure 6' 1 l, we

distribution function /6 and the actual distribution function

The distortion of / from /s is small under the local equilibrium

/s is isotropically distributed, it does not contribute to

between f and fs,that is, the arrowed area, contributes to the next current or heat

ecause
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Thus, for the (drift) diffusion theories to be valid, the deviation from the equilibrium
must be small:

few experimental rePorts

theoretical studies are for
heat conduction in a

region such that the assumption

For such cases, onb

approximations such

from local equilibrium
experimental evidence on

by energy exchange

and Tien, 1993) or

often used as

only be

umklapp scattering is

waves will propagate at a sPeed

6.4.3,we will discuss in

Rather, it is due to the fact
equilibrium distribution
Maxwell distribution we

modifiedbyasmall
(6.49).Inthis

illustrate the

represented by eq. (6.49);

assumption. B
any net flux. OnlY the

/F\
I v. V.-fo * - . V'-fo I\rn/

L"fo)),lhu'rv oY,fs
kk

LdT
TE <<I

(6.1 16)

Taking phonon heat conduction as an example, multiplying the above inequality by har

and summing over all the phonon states, we have

fo.) t

(6.1 r7)

(6.1 l8)

where we used k : CuL/3.
If we make the approximation that the specific heat is independent of temperature

such that U : CT, the above condition becomes

(6.1 le)

Equation (6.119) means that the temperature variation within one mean free path must
be small compared to the absolute temperature for the diffusion theory to be valid. .

Another assumption that we made in our derivations, in going from eq: (6.47)

to (6.48), is that the deviation term g is much larger than the gradient of g:

,€ttvoVg (6.t20)
.T

If we approximate Vg ry g /L, where I is a characteristic length that can be associated

with, for example, the film thickness, the above inequality becomes ,

'ruA
J:'J: Kn 111 6.121)LL

where Kn is called the Knudsen number. The above relation means the characteristic
length must be much larger than the mean free path for the diffusion theory to be valid.

Temporal wise, for the tetm Af /U to be negligible, we must have ,

af .,f -fo
^_ ((. 

_ (6.122)Atr
:

For a transient phenomenon occurring with a characteristic time scale z" (such as a laser
pulse width), the above inequality requires 'i

: Tc))t

which means that the transient process must be slow compared to the relaxation time.
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If any of the conditions (6.119), (6.121), or (6.123) are not satisfied, bne must be

:careful about whether the drift-diffusion relations discussed in this section are still valid:

Sometimes, eq. (6.121) can be violated but (6.119) is still valid, as in the case of heat

conduction along a thin film. In this case, the Fourier law, for example' is still valid

for heat conduction along the film, but the thermal conductivity must be modified. In

chapter 7, we will discuss various size effects for which one orseveral ofthese conditions

are no longer valid.

6.4 Conservation Equations

In the previous section we saw how constitutive equations, for example, relations

between heat flux and temperature gradient, or between electric curent density and the

electrochemical potential gradient, can be derived from the Boltzmann equation. In this

section we will derive conservation equations, such as the particle continuity equation,

Navier-Stokes equations, and so on, ffom the Boltzmann equation. For simplicity

notation, we will change the Cartesian coordinate notation from (x, y , z) to (xt, xz, xz)

and from (u r, u y, u. ) to (u1, u2, 4). This will permit us to write long summations

the so-called Elnstein summation cowention, for example

3u* \uu 0u, 0u1 0u2 0q lut

-L-I--
0x' ay'Az 0x1'0x2'04 }xt

where i is a dummy index and the repeating

example,.u;u; : vl + ul + u!.
From the probability distribution function

of i means summation over i. As another

/ we can calculate the average

of every microscopic variable X,

:,1Ff a_t, : I xf a3v :y I xy a3lv (6.1(x) : "J fF;: 
__; 

p r
'. where we have used the short notation d3v : d'utduzdul, p is the density, rn is

mass per particle, and the integration, which is a triple integration, is over all
possible values

the distribution
of q;u2, u3, that is, (*oo, oo). In the previous section we

function first and then proceeded to find the average

as the heat and current fluxes, or the shear stress as a function of the

driven force, Here, we do not seek a solution for the distribution function. Rather,

will seek equations governing the average value of X' We multiply both sides of
Boltzmann equation by X and integrate over the momentum space (Reif, 1965;

and Kruger, 1986)

From the above equation, one can.derive the Navier-Stokes equations for gas

and similar "convective" fype of equation for electron and phonon transport, as will
demonstrated below.

',il,

'qRrcLE DEscRtpIoN oF TRnN5poRT pRoCESSES: clAsstcAL LAWS

6.4.1 Navier-Stokes Equations

If we take the quantity x as rneaning conserved quantities (such as mass, momentum,
and energy), the net scattering term, that is, the right-hand side ofeq. (6.126), should
vanish. In these cases, the averaged Boltzmann equation can be significantly simplified.
The microscopic expressions for these .onservid quantities pei particle of a dilute
gas arc

MassX:rz (6.l}i)
l

Momentum X: my (6.12g)
.:l

Energy X : muz /Z I mtn 6.129)

Where fin, is the potential energy per unit mass of a particle.
substituting eq. (6.127) into (6.126), *re three terms on the left-hand side of

eq. (6.126) become, respectively,

III E(mn) 0p

du1dv2du3 : Q
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(6.130)

(6.131)

(6.132)

oo

tn

-@ -oo -m

(6.1'u) III
-& -m -rc

-@ -oo -oo
0(mnu;)

mv oYrf du1du2dv3

III( dufiu2du3

quantities
i t i -;oy"rdufliutzdtuz

-@-oo-m
.oooo

: I I l(ry*)
m

-oo -m -6

:where u is the average velocity. Equation (6.132) ends in zero because / approaches
zero as u approaches infinity. We also used the fact that t, r, v are independent variables.
Although the average quantiry, such as u, depends on r, this dependence is due to the
dependence of / on r. using eqs. (6.126,6.13M.132), the mass conservation equation

:can be written as

0p

OL
(6.133)
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ofeq. (6.126) become
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Equation (6.135) can be written as

f 0( f u,u;\ '"
I m \J L ydru_
J ox;

0(mIvlu'ifd3v)

Y+r) * o(Pliu ) * o(Plu'iu")) 
- *.Ot ' lxt ' A*, -''

This is the momentum conservation equation for the component in the j-direction.
S-imilarly we can derive the 

"o"rgy 
.oir"*ation equation by setting X = ;ip;

m ry'61 (Vincenti and Kruger, 1986).

a / . I \ a r / t \t
u (o/+ ,ouiui)+ *loutTu + r"iri))

turther simplifY eq. (6'1

we now decompose the velocity into a random component and an average

v: u*y'

such that

_ 3(puiui)

becomes

where

is the total internal energy (hanslational plus other forms ofinternal

f f f *u1{a,'a,zdu3:
-oo -m -oo

Iry#ltuduzduz
-oo

r

r

0(m x nu) O(Pu1)

Mat

O(mu 1ui f) dutduzduz

(6.134)

(6.135)

(6.141)

We can write the cross term as

p1u!uj)-r-tit 6.142)

where P is the pressure, which comprises the normal components of the random
thermal velocity

r : !<p'l) + @'3) + F)'\D: !<"!r,l 6.143)

*o o' o,* 
'hear 

stress 
r : -tpp((u!uu,) 

p,6;i)

where 6;; is again the Kronecker delta function, which equals 1 when i : j and zero
when i I j. Equation (6.141) then becomes

o(pu i)P- a.+
AP 0:'': -;-- *;3 * Vi
dxj dxi

(6.14s)
3(pu;u

I

f f f ^,,I Y"r dufiu2du3

-oo -oo -oc

I
oo

T

-@ -co -co

where V is the force per unit volume or the body force"To

qu'ru') +

(6.146)

(6.147)

and 11 is

fvfd3t
":ffi:u(t'r)

enthalpy per unit mass [J kg-1]

(6.148)
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Equations (6.133), (6.145), and (6.146) are the conservation equations for mass,

mornentum, and energy. To further simply the equation, we need the relation betwee[

the shear stress and the average velocity, and between heat flux and temperature.

The previous section has shown how to derive these constitutive equations. Following

"qr. 
(o.e:-0.05) and maintaining a more general three-dimensional velocity profile, one

can show that the shear stress can be expressed as

rii : nrcBr,l#.Y -?H',rf lH.H -'rfi,,,l (6 rs')

Substituting the above-generuhzedNewton shear stress law into eq. (6.145)' we obtain
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The heat flux is defined as

the familiar Navier-Stokes equations.

6.4.2 Electrohydrodynamic Equation

When electrons flow in an electric field, they acquire'a nonzero average velocity. We

can perform similar operations for electron transport as we did

to derive the governing equations for electron transport. There is,

cation. In a semiconductor, the numbers of electrons and holes can vary. An electron

the conduction band can fall back into the valence band, a process called

which we will discuss inmore detailinchapter8. Dueto electron

the number of electrons in the conduction band and the number of holes in the

band are reduced.'During this process, the excess energy of the electron is

by emitting a photon or by generating phonons. The latter becomes heat

The reverse process, that an electron is excited from the valence band to the

0n *O(nui) _G_R
0t 7xt

band by absorbing'photons and phonons, or kicked by other

electron in the conduction band and a hole in the valence band,

existence of the generation and recombinatioir processes means

rs no longer zero. Other than this major differbnce, the derivalion of the electron

momentum, and energy conservation equation is very similar to the

Navier-stokes eqtiations given in the previous section (Blotekjaer' I
2000). without the detailed derivation, we write down the continuity equation as

where n is the number density of electrons or holes, u is the average velocity

electrons defined according to eq. (6.133) and is called the drift veloeity, G is the

generation of electrons, and R is the rate of recombination. We can also write the

equation in terms of the current density for electrons

0n l7Jei
-J------::-:G-R0t (-e) 1xi +.ryP=r",;Ei-y.(y),_n (6.160)

'RTrcLE DEscRlp'oN oF TMNspoRT pRocESSES: cLAssrcAL LAW'

fire momentum equation can be written as (Lundstrom, 2000)

0(nui),O(nuiu),neEi
Ulxim

a Tij AT

\xt 0*j

+
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d\nKB '1 ij )

where the temperature tensor is defined as

:lf_
: 

ra Tij : r* J @; - u;)(u1 - u)f d3v (6.154)

Eqyafon (6.154) actually coresponds to eq. (6.142). In fluid mechanics, this tenn is
split into the normal stress (pressure) and shear stress. In electrohydrody""rrt;;ft;
terrn is often directly related to the electron temperature z by treating,h"-r"nro, u,
diagonal and isotropic so that

t* 0(nrcsT)

0rj

(6.1s3)

(6.155)

.(6.1s7)

(6.r58)

(6.1s9)

above for gas

howevbr, one compli-

electrons, thus creating

is called generation.

that the scattering

derivation
970; Lundstrom,

'nu
. l- --=-.nx

The current is J, : -enu, and thus

The right-hand side of eq. (6.r53) is the rate of momentum scattering, which is often
expressed using the relaxation time approximation

I Apil n;tt j

LatJ.:-^ (6'156)

using eqs- (6.155) and (6.156), we can write the momentum conservation equation as

I O(nrcsT) nui
:-J

m lxt rm

- €rm O(nfuT)
e,i t 

--
"m0*j

0nNo6i*ea;-
dxj

t-ne2

where we have neglected the variation of r with x. If this variation is incruded, weobtain an additional rerm corresponding to the thermoele"t i. .r.ei.-iq""ti"" to.issjis identical to eq. (6.82), tire Crift+imrJion equation.

- Taking the moment from the Boltzmann equation for the kinetic energy of erectrons
leads to the following energy conservation equation



and the energy scattering rate must be determined for different scattering

(Blotekjaer, 1970). One example, which qonsiders the electron and phonon at

equilibrium temPeratures' rs

nq (r - ro)

268 NANOSCALE ENERCY TMNSPORT AND CONVEF 
- 1N 

: '

where the energy V, comprises the thermal energy plus the average kinetic energy:

3-n73fn'
t, - '-nrc nT * inu;u; - "-nrc BT * inuz (6"1

2"2',l'z

(H)":-

as z1y and ru, the phonon hydrodynamic equations are established for the regime when

ty 11 tu, and the time constant of heat transfer r" is comparable with or smaller than zr.
When r; (( zy, that,is, there exist no momentum-destroying scattering processes, the

phonon energy is redistributed in the normal scattering processes but the total momentum

atong the direction of heat flow does not change. In this case, phonons have a nonzero

average velocity, u, as do molecules or electrons. The equilibrium distribution function
for the normal process is the drifted Bose-Einstein distribution

(6.164)

where u is the average phonon drift velocity and k is the phonon wavevector. The phonon

Boltzmann equation can be written as

Ts

where z, is the energy relaxation time, To is the phonon temPerature, and z, is

momentum relaxation time. This equation is valid onlY for electrons in the

conduction band. Similar equations can be written for holes and for electrons

different bands. The equation can be.coupled to the phonon heat conduction

tion to form a closed set of equations' Further consideration of different

groups, such as optical and acoustic phonons, has also been undertaken

et al., 1995; Lai and Majumdar' 1996).

Equations (6.152), (6.157), and (6.1 60) form a set of closed

electrohydrodynamic equations, that can be used to solve for the electron density,

velocity, and temperature distributions These equations were studied quite

in investigations of "hot electron" effects, that is, when the electron temperature

significan{y higher than the phonon temperatue. Such hot electrons can be

under a high electric field. Small electronic devices, such as the field-effect

used in integrated circuits, are often operated with a high electric field and often

an elecEon temperature much higher than that of Phonons. The

equations are sometimes used to study submicron devices. The applicability

electrohydrodynamic equations to very small de-vices, however' is highly

because these equations are derived under the assumPtion of local equilibrium,

may pot be valid when the electron mean free path is much larger than the

length of the device.

The above summary shows although the eleitrohydrodYnamic equations share

similarities with the Navier-stokes equation, there are clearlY Places where

concepts are used, such as the temperature tensor ,rather than the stress tensors.

consequences of these subtle differences have not been examined in detail.

6.4.3 Phonon Hydrodynamic Equations

for molecules and electrons; theories

phonons (Gurevich, 1986). The

behindphonon hydrodynamics is the relative importance of the normal scattering

(N-process) that conserves crystal momentum versus the umklaPP scattering that

'

We define the local energy and momentum density variables as

3fu:t3J

(6.167)

Here, for simplicity in notation, we have assumed that the three phonon polarizations
are identical. Because phonons can be created and annihilated, the number density is
not conserved and no continuity equation is needed. Multiplying eq. (6.165) by hk; and

inteqetine 
over all wavevectors leids to the following momentum equation,

*: # | nur:a'u

9P, +a>ii-:- 3 
= [f -fooo.ozu

M ' Arj - (2n)3 I ru "^I@ \

,,, =,# | nnnlya3u

(6.1 68)

term related to zN is zero because momentum is conserved for the
and

hafd3k

(6.16s)

(6.166)

(6.r70)

similar to the inertia terms in the Navier-Stokes equations.
Multiplying eq. (6.165) by ha tnd integrating over all'wavevectors, we obtain the

equation as

not conserve the momentum. Denoting the relaxation times for these two

,, 
*u,tn, :oAt \xi

(6.1,71)
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The above derivations have not made any assumption and are thus

applicable. Now we will follow strategies similar to those used in deriving the thermal

conductivity in order to further evaluate various terms in the momentum
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In the above derrvation, s is theentropy.ofone phonon quantum state and ,sp is thephonon
qntropy density. we have used integration by parts in carrying out the secold-to-rast step,
and the following relationship for the entropy of one phono-n state,*

h'f.,/r r r^\ - 
*u' u'

7J0\r -r J0): - h A, 6.L'77)

substituting eq . (6.173)into (6.17 r ), we obtain a 0th-order expression for the second
term in eq. (6.170): - - ----

1Joi 3

\xi (2n)3

When z,y (( zu, the dominant term is /4. As a 0th-order approximation, we

exarnine how i nonzero drift velocity affects the momentum and energy transport.

this case, we can approximate

equations. From eq. (6.165), we see that the distribution function approaches

' ' fo/ru'l fa/tu
l/tu + l/tu

3f" ftkou* fa * fr- *Oru :.fo*/o(1 * fd *
Using this distribution tunction, eq. (6.167) becomes

hki fad3k

hk* 7up

)

Pn (2n)3

l.:) .

where we have used

n,ffno+ nffiffa'x

+ /o(l + /o) d3k
rcsT 0x;

(6.178)

(6.179)

(6.1 80)

ftkru
"fo 

+,fo(l + fO *
:##l#@,#)*.
:##l?o#)*.
:r## 

lon,,ta3v:rsoff

wP+srff:o

,# *rsoff:o

/o(1+ "fo)

and has units of kg m*3, which makes the P term in eq. (6.168) similar to the pu term

the Navier-Stokes equations. Substituting eq: (6.173) into (6.169) and maintaining

the leading terms, we obtain the following expression for the second derivative term

eq. (6.168):

SXijo '3
0* j (2tt)3

J

(2n)3

,t,i:# l*,(r,o+n\)n'

*,,;'(##.#W)
(6.18 1)

Equations (6.179) and (6.1g0) constitute the 0th-order phonon hydrodynamic
that is, the inviscid phonon flow since we have completeiy neglected the

scattering. Elminating ui fromeqs. (6.179) and (6.1 80), we obtain

I
I
I
f

)hk: 
-"oki

10sOZ
h. 0a \xi

AT

/o(1+,fo)
a2T

iv
Tgp azT
Cqii 0x;0xi

d3k
o*j

: - u, <r,"9

*Equation (6.127) can be proven based on eqs. (4.14) and (4.40). see exercise 4.20.

(6.182)
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In helium-Il (Gurevich, 1986),

zn2rc[ra

45h3as

where u is the speed of sound. Substituting the above expressions into eq' (6.183)

to u, : u/^,/3, This thermal wave has a very different origin to that ofthe hyperbolic heat

conduction equation discussed in section 6.3.5. The latter is derived under the relaxation'

time approximation while keeping the time derivative of the distribution function'

former is derived on the basis of the displaced Bose--Einstein distribution for

dominated by normal scattering. Although the hyperbolic heat conduction

I can be applied to umklapp-dominated Processes, its derivation imPlies that the

deviation from equilibrium is small. This condition is unlikelY to be realized in

transport Brocesses, which are usually accompanied bY a steeP temperature gradient

masked by other carrier transport; as in fast laser experiments (Qiu and Tien, I

The derivation of the phonon hydrodynamic equation does not consider the steep

perature gradient either. However, its premise is built on the assumption that the

scattering is much faster than the urnklapp scattering, such that phonons have a

drift velocity. This condition can be satisfied only at low temperatures. Thus, at

temperature, the wave types of equation, either the hyperbolic heat conduction

discussed in seition 6.3.5 or the hydrodynamic equation discussed here, are unlikely

be applicable. :

ff *r" u*ttupp scattering is included, the phonon hydrodynamic equations can

expressed,as (Gurevich, 1986)

oPi - ^ aT T'ui Tsz'

at rsoh-Euh";#i+fiui=o (6'1

car +o-Jn' :oAt dxi

T

hu
(6.192)

Equations (6. 185) and (6. 186) are very similar to the Nayier-stokes equations. Similar
flow regimes can also be expected. For example, the phonon Poiseuille flow has been
observed and discussed in literature (Guyer and Krurrhansl,7966; Gurevich, 1986).

6.5 Summary of Chapter 6

'This chapter has two major aims: one is to introduce the Boitzmann equation, and the

, The Boltzmann equation, or the Boltzmann transport equation, can be derived from
are all established in phase space, whichgeneral Liouville equation. These Oquations

multidimensional. The state of a system, described by the generalized coordinates r(n)
momentum p(') of all the particles in thasystem, is one point in the phase space at any

time. The Liouville equation of motion describes the evolution of the distribution
for an ensemble of systems in phase space. The Boltzmann equation is simplified

the Liouville equation through the use ofthe one-particle distribution function. The
ofthis particle with the rest ofthe particles in the system is represented by the

272 NANOSCALEENERCYTRANSPORTANDCONVERSION

This equation is a hyperbolic one that implies tl]at thg ternperature field propagates

u, u *uu".lln un isotropic medium, 4rj degener4tes into a sialar 4 and the corresponding

;;;;f *""" propagation is called the second sound (Ward and Wilks' 1952):
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Umklapp scattering. These coefficients can be derived similarly to what we have done
in section 6.3 for other transport coefficients, that is, by substituting eq. (6.164) in the
left-hand side of the Boltzmann equation and solving for from eq. (6.165), followed by
substituting / into eqs. (6.169) and (6.171). Details can bb found in Gurevich (1986).*
Here we will give only the final results:

h23ft"\LMND _ -"rGf J 
t"'foffo+t)

Qr"^ - 
u,*,?) (t,,0 - a,o,tt) *- (6.r8e)

.

trz3f
,,, : ft ofo l,^^r^+ r) (aru; -#r^) Q,, -#")d3k (6 reo)

1--t- 72 3 f l -.ki' : ;l|'r1o *f J ;foffo-t t)kikid3k (6'let)

where u; is the component of the group velocity. Their orders of magnitude are

,-E,k-*A lt2tu

, :r!::!l' *4 s = 3sp
l5ht uJ

(6.184)4=

Pi : niju j

*Gurevich's book does not carry 16 in the Boltzmann factor. Expressions given here included ra for .
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scattering term. The Boltzmann equation is valid only for a dilute system of Particles,

such as gases, electrons, photons, and phonons in the

Boltzmann equation is based on the one-particle distribution function,

coordinates comprise six coordinates: position r and translational momentum P (we

not consider other modes of motion, such as rotation).

The key to the Boltzmann equation is the scattering term. Quantum mechanical

ciples are often used to deal with scattering. The time-dependent perturbation treatment

in quantum mechanics leads to the Fermi golden rule for calculating the

probability from one quantum state to another. A general expression of the

integral can be formally written down on the basis of the scattering probabilitY

the distribution function. This leads to an integral-differential form of the

equation, which is difficult to solve but has often been treated in thermal

transport in the form of the equation of radiative transfer.

ffansport, as well as gas transPort, we often use the relaxation time

In chapter 8, we will further examine the cases in which the relaxation time

imation is invalid. The relaxation times for different carriers, including

phonons, photons, and molecules, are discussed. These typically involve

constants that are determined by fitting experimental data on transport

When multiple scattering coexists, the Matthiessen rule is often used to obtain the

relaxation time.
Starting from the Boltzmann equation under the relaxation time apProximation,

proceed to derive the classical constitutiVe equations including the Fourier law,

Newton shear stress 1aw, the Ohm law, the drift-diffusion equations, and the

electric relations. The common assumptions made in all these relations are

(l) the nansport process occurs in a time scale much longer than the relaxation

and (2) deviation from equilibrium at every point is small-that is, the local

assumption. We showed that the kinetic coefficients of a particular type of carrier

often related, because of their common origin, such as the relationship between

and thermal conductivity, the Einstein relation between diffusivity and mobility, and

Wiedmann-Franzlaw linking electrical and thermal conductivity. The relationship

kinetic coeffrcients culminates in the onsager reciprocal relations. we also

on the appropriateness of the hyperbolic hgat conduction equation. The key message

that all the constitutive relations are derived under certain approximations, which

no longer be valid for transport at micro- and nanoscales, as we will discuss in

detail in the next clapter.
From the Boltzmann equation, we

We explained the derivation of the

can also derive the familiar conservation

Navier-Stokes equations. Along a similar

derivation, one can obtain the electrohydrodynamic equations for charged carriers

the phonon hydrodynamic equations' For phonons, we showed the phonon

namic equations that originate from the difference between the

momenhrm-destroying scattering processes. The phonon hydrodynamic equations

to second sound and temperature waves, which occur only when the time scale of
transport is longer than the relaxation time of normal scattering but much shorter

the umklapp or other momentum-destroying processes. From our

become clear that the hyperbolic heat conduction equation, which

existence of the second sound at low temperatures as a proofofits validity, has a

validity range that is difficult to realize through experiments, at least for

particle regime. Because the
the phase-space

For phonon and electron

normal scattering

discussion, it
often invokes

diffusivity, m2 s-1
coeffrcient in eq. (6.3 1), s3

coefficient in eq. (6.30)

coefficient in eq. (6.30), K-3s
specific heat, J kg-l 1q-t
volumetric specific heat,
J m-3 K-l
molecule diameter, m
density of states per unit
volume, m-3
unit charge, C
energy of one particle, J

conduction band edge, J

chemical potential, J
magnitude of electric field,
Vm-l
electric field vector, V m-l
one-particle distribution
function
equilibrium distribution
function
N-particle distribution
function
external force on the
particle, N
deviation from equilibrium
distribution
rate of generation per unit
volume, s-l m-3
Planck constant, J s
Planck constant divided by
2t,I s

enthalpy, J kg-3
intensity, W m-2 srad-l
flux of heat transfer rate,
W *-2; energy transfer rate,
W m-2; current, A m-2, and

_l 
-1parucles,s 'm'

thermal conductivity,
wm-l K-l
therrnal conductivity tensor
due to umklapp process,

wm-l K-l
wavevector, m-l
unit vector along the

wavevector direction
extinction coeffi cient, m- I

characteristic length or
crystal length, m; Lorentz
number, WQK-2;
coefficients

space or momentum degrees
of freedom of one parlicle;
mass, kg
scattering matrix element, J
total degree of freedom in
space or momentum for N
particles; particle number
density, m-3
number of particles in the
system

ith component of the

momentum in phase space,:
Kgms '
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systems. In multiple-carrier systems, such as electron-phonon interactions, a subject
we will discuss in more detail in chapter 8, the coupling of electrons and phonons, with
their different heat capacities, can lead to hyperbolic types of heat conduction equation,
even though the goveming equation for each carrier is still of the diffusion type. such
waveJike equations should not be confused with the wave behavior of single carrier
systems.

we again followed the tradition of parallel development for electrons, photons,
phonons, and molecules, Through this effort, we hope that the reader can see that
divisions between different disciplines are quite arbitrary. Although the languages are
very different, due to the historical developments within each field, common grounds
exist among them.

6.7 Nomenclature for Chapter 6

H
I
J

k

k;j

k
I
Ke

L

ln

Mif
n

/r

p(i)
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momentum coordinate vector of
one particle, kg m s-l
momentum coordinate vector of

-lpartlcle t, Kg m s '
pressure, N m-2
average momentum Per unit
volume,kgm-2 s'1 r

heat absorbed or rejected,

Wm-2
heat generation,

Wm-3
ith component of the sPace

coordinates, m
space coordinate vector of one

particle, m
space coordinate vector of
particle i, m

, rate of recombination,
-1 -?s ^m -

polarization index; entroPY

J K-l
Seebeck coefficient, V K-l
entropy density, JK-1 m-3
time, s

temperaiure, K
temperature tensor, K
average velocitY, m s-1

total energY densitY, J
_1

veloclty, m s '
drift velocity, * s-1

Fermi velocity, m s-l
_l

groupveloclty,ms.:
second sound, m s-l
volume, nt3

transition rate from initial state i
to final state /, s-l
Cartesian coordinates

microscoPic quantitY

absorption coefficient, m-1.
Thomson coefficient, V K-l :

parameter in the energY

dependence of electron

scattering

delta function
second-order tensor defined bY

eq. (6.175), kg *-3

polar angle

Debye temPerature, K
mean free Path, m

dynamic viscositY, N s m-2 '

electron mobilitY,
*2y-1* 1

viscosity defined bY

eq. (6.189), kg m-l s-t
Peltier coefficient, V

-_1
denslty, kg m "
electrical conductivitY,

Q-l m-l
frequency-dependent
r.uit"ting eoifficient, m-1

defined by eq. (6.169), J m-4

r(r)

!,2

relaxation time, s

characteristic time of a
process, s

scattering Phase function

azimuthal angle

electrostatic Potential, V
electrochemical
potential, V
thermal conductivitY tensor

due to normal.Process,

w m-l K-l
internal energY of

' J kg-:
electron energY densitY,

J m-3
potential energy,

J kg-3
body force, N m-3
angular frequencY,Hz
solid angle, srad

ensemble average

Subscripts

zeroth order

components of Cartesian

coordinates, corresPonding

x,y,Z
botrndary '

drift
electron

0
1,2,3

b

d
e
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energy l

flnal state

Fermi level
group velocity
initial state; coordinate
index
impurity
momentum
total degree

normal process

phonon

heat

total
umklapp scattering
Cartesian component
frequency dependent,
spectral quantity

Superscripts

n component in the phase

space

N-particle
time derivative
average

(n)
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6.gThermalcond.ilctivityofsases.Provethatthethermalconductivityofa
monatomic gas is
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(a) Calculate the Fermi level as a function of the carrier concentration from both
the Fermi-Dirac and the Boltzmann distribution, and show that the levels do not
differ much in the given doping range.

(b) Calculate the Seebeck coefficient as a function of the dopant concenrration.
6.14 Seebeck cofficient of a metal.

(a) Assuming a constant relaxation time, prove that the seebeck coefficient
of a metal is given by

(b) Prove that ZT for a metal satisfies the following inequality

u:tr(KB
NTKBT

m )

6j10 Therm,oelectric cooler. A thermoelectric device is typically made of P-n

tions as shown in figure P6.10. When a current flows through the 5n
both electrons and holes carry energy from the cold side to the hot side.

Peltier coeffrcients ofboth p and n materials are equal in magnitude, II, but

opposite sign. The cooling rate due to current flow is 2ll x 1. In addition

this cooling, there is also Joule heating and reverse heat conduction'

that the electrical and thermal conductivities of both legs are the same, derive

expression for the net cooling Power at the cold side in terms of the

at the cold and the hot side, the current' and the cross-sectional area and

of the leg. Show that the cooling power reaches a maximum at a cerlain

current value.

HOTSIDE

Figure P6.1 0 Figure for problem 6.10.

6.11

6.12

also called the power factor
(a) Derive an expression for the power factor ,S2o for a quantum well

d and with an inflnite barrier height' in terms of electron effective mass,

results obtained.
silicon. For bilicon with doPing

, the Boltzmann distribution can be

instead of the Fermi-Dirac distribution' Silicon has six identical

bands with an effective mass of 0.33 rn" for each conduction

zT <3n2rc2"72
4E2.

J

(c) Estimate the Seebeck coefficient of copper.
Einstein relatio,rz. when the Boltzmann approximation is valid, prove the Einstein
relation between mobility and diffusivity for electrons

t4!
2eE 7

6.15

knTA: 
-pe

m, is the mass.of a free electron. Assume a constant relaxation time.


