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5.19 Landauer formulation for electron thermal conduction. A metallic square
nanowire is placed between two thermal reservoirs at temperatures 77 and T3.
Assume that electron transmissivity is equal to one. Derive an expression for the

thermal conductivity of the nanowire contributed by the electrons.

5.20 Coherence length of blackbody radiation. Estimate the coherence length of a

blackbody radiation source at 10 K and 300 K.

5.21 Coherence length of laser radiation. Estimate the coherence of a laser radiation 3

with a central wavelength of 1.06 pum and a spectral width of 10 A.

5.22 Coherence properties of electrons. At low temperatures, the Fermi velocity in :

a material is 2.76 x 10° ms™!, the electron relaxation time is 3.8 ps (1 ps =

1012 s), and the phase-breaking time is 18 ps. Calculate the mean free path and :' 1

the phase coherence length of an electron.

5.23 Phonon group velocity. The phonon dispersion for a monatomic lattice chain is 3§

w=2/—
- m

SlI'l?

Derive an expression of its group. velocity. Prove that the group velocity at the

zone boundary is zero.

5.24 Difference between wave and particle approaches-(project type). In section 5.6 4

6

Particle Description
of Transport Processes: Classical Laws

we stated that wave optics and geometrical optics do not lead to the same Rk

results for the radiative properties of periodic multilayer structures for blackbody
radiation. Consider a periodic structure made of two alternating layers with
refractive indices of (4,0) and (2,0), that is, nonabsorbing films. Blackbody

radiation at 1000 K comes toward the periodic multilayer structure at normal =
incidence. Assuming both sides of the multilayer structure are vacuum, calculate * 78
the reflectivity and transmissivity averaged over the blackbody spectrum for the &

following cases, using wave optics and ray tracing:

(a) For each layer thickness of 1 pm, 10 p.m, and 100 p.m calculate the variation b

of reflectivity and transmissivity as a function of the number of periods in the
structure. Compare the results for wave and ray tracing. :
(b) For 10, 100, 1000 periods; calculate the average reflectivity and transmissivity

as a function of the thickness of each layer, assuming all layers are of equal thickness, _'

for the layer thickness range of 1 pm to 100 pm.

Geometrical optics ‘ca"n be obtained using the following recursive formula for the
addition of every interface (Siegel and Howell, 1992, p. 928)

R.T?2
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Ryym = Rm +

where the subscript m refers to the total reflectivity and transmissivity of the “z&k
first m interfaces (counted from the incident side) and 7 represents those of the .

subsequent z additional interfaces. For example, for one layer with two interfaces
(the reflectivity and transmissivity at the first interface are R; and 71 and those
at the second interfgce are R and 13), the above formula becomes

Ryt? 7
=R+ !

C1—=Ri1Ry A=RIR
Hint: one numerical problem with the transfer matrix method for thick film

Ry 41 =

is that the exponential function may blow up. One must find ways to solve this’

problem for calculating thick films using the transfer matrix method.

We discussed in the previous chapter when we can ignore the coherence effects and
treat heat carriers as individual particles without considering their phase information.
In the next few chapters, we will describe how to deal with energy transfer under the
particle picture. Most constitutive equations for macroscale transport processes, such
as the Fourier law and the Newton shear stress laws, are obtained under such particle
pictures. These equations are often formulated as laws summarized from experiments,
In this chapter, we will see that most of the classical laws governing transport processes
can be derived from a few fundamental principles.

¢ In chapter 4, we studied systems at equilibrium and developed the equilibrium
distribution functions (Fermi-Dirac, Bose—Einstein, and Boltzmann distributions). The
distribution function for a quantum state at equilibrium is a function of the energy of the
guantum state, the system temperature, and the chemical potential. When the system
is not at equilibrium, these distribution functions are no longer applicable. Idea.lfy, we
would like to trace the trajectory of all the particles in the system, as in the molecular
dynfm?jcs approach that we will discuss in chapter 10. This approach, however, is not
realistic for most systems, because they have a large number of atoms or molecules.
- Thus, we resort to a statistical description of the particle trajectory.

In the statistical description we use nonequilibrium distribution functions, which
depend not only on the energy and temperature of the system but also on 'positions
and other variables. We will develop in this chapter the governing equations for the
nonequilibrium distribution functions. In particular, we will rely on the Boltzmann
equat_ion, also called the Boltzmann transport equation. From the Boltzmann equation
we will derive familiar constitutive equations such as the Fourier law, the Newton shear
. stress law, and the Ohm law. We will also demonstrate that conservation equations,
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such as the Navier-Stokes equations for fluids and electrohydrodynamic equations for 2
charged particles, can be obtained from the Boltzmann equation. Special attention will 3
be paid to the approximations made in these derivations, which will be relaxed in the next
chapter when we consider various classical size effects. A discussion is also presented
in this chapter on thermal waves and their appropriate descriptions.

p{l'l

ensemble

6.1 The Liouville Equation and the Boltzmann Equation

[ ] : "
~2 @ | PR Figure 6.1 Phase space, and an ensemble

We discussed, in chapter 4, the probability distribution of an equilibrium system_.
@@ eAr® in the phase space.

occupying a specific accessible quantum state. Because the system is at equilibrium,
the probability distribution take a simple form. For example, the Boltzmann distribution
depends only on the energy of the quantum state and on the system temperature. Transport
occurs, however, only when the system is in a nofequilibrium state and consequently,
the equilibrium distribution can no longer describe the state of the system. Conceivably,
to describe the state of such a nonequilibrium system, more information is needed. In
this section, we will introduce nonequilibrium distribution functions that describe the’
states of systems and the governing equations for the evolution of the nonequilibrium
distribution functions. We will start from the general Liouville equation, which is
valid for all classical systems but is difficult to solve, and move on to the simpler
Boltzmann equation that serves as the basis for our future analysis. We will also discuss’
the assumptions made in the Boltzmann equation and see, consequently, its limitations;

such an ensemble never intersect, so that the flow lines in phase space do not intersect
. each other. _

The number of systems in an ensemble is usually very large, much larger than the
number of the particles in one system. Because of the large number of systems in one
ensemble, we can treat the points of the ensemble, each representing one microstate of
the original macroscopic system, as forming a continuum in the phase space, just as
we treat atoms or molecules in a macroscopic system as a continuous medium in real
space. We define a particle density ‘¥ such that, surrounding ‘any point (r™, p()
in the phase space, where 1™ = (ry,12,...,1ty) = ¢D, 7@ ;@ | »®) includes
all the space coordinates of N particles and similarly p represents all the momentum
coordinates, the number of systems is ‘

6.1.1 The Phase Space and Liouville’s Equation °

Consider a system with N particles, where each particle can be described by ihef No. of systems = F®™, r™, p™)Ar® Ap™ (6.1)

generalized coordinate r and momentum p. For example, the generalized coordinates
of a diatomic molecule, ry, include the position (x1, y1, z1), the vibrational coordina
(the separation between the two atoms, Axi), the rotational coordinates (polar and
-azimuthal angles, 6; and ¢;); likewise, the generalized momentum, p;, includes the
translational momenta (mvy, mvy1, mvz1), the vibrational momentum proportional to
the relative velocity of the two atoms (md Ax1/dt), and the rotational momenta (angular
momenta of rotation corrésponding to 6 and ¢ directions). We assume here that there are |
m degrees of freedom in space, that is, m generalized spatial coordinates, and m degrees,
of freedom in momentum for each particle. The number of the degree of freedom of the
whole system is 2n = 2m x N. These 2n variables form a 2n-dimensional space that
called a phase space. The system at any instant can be described as one point in such
a space. The time evolution of the system, that is, the time history of all the particles.
in the system, traces one line in such a 2n-dimensional phase space, which we will ca
the flow line as in fluid mechanics. :

Now we consider an ensemble of systems—a collection of many systems satisfying
the same macroscopic constraints—as we did in chapter 4. At time ¢ = 0, each system
in the ensemble is represented by a different point in the phase space, as shown i
figure 6.1. From classical mechanics, we know that with a given initial condition the:
trajectory of the system is uniquely determined. Since the initial condition for each.
system differs from that of other systems in the ensemble, the traces of systems in.

in 2 small volume of the phase space; Ar(")Ap(") , where Ar® — ATIAT ... Ary =
ArDAr®  Ar®™ and Ap™ = ApiAp;...Apy = ApDAp® . Ap™. We
use superscript (n) to denote the generalized space and momentum coordinates, and
superscript (V) to represent the N particles. The particles density in the phase space
S, p™, p™) is called the N-particle distribution function, which represents
the probability density of finding a particular system at a specific state defined by r®
and p®). If we assume that the ensemble is ergodic for all time, this distribution function
a_l_so.represents the probability of observing one system at a particular state r and p®
overa period of time (such a time period should be smaller than the characteristic time
We use in tracing the trajectory, or the relaxation time that we will discuss later).

The time evolution of fM(r, r™, p) in the phase space is governed by the
Liouville equation, which can be derived on the basis that the flow lines of systems in
the ensemble do not intersect. Consider a tube formed by the traces of a set of points (a
:mbset of systems in the ensemble) as shown in figure 6.1. Since the flow lines do not
Intersect, the points in the phase space are conserved. We want to derive an equation
for the distribution function £ based on this conservation requirement. Recall that
in ﬂ}lid mechanics or heat transfer, we often @ise the control volume method rather than
2 tracing the trajectory of individual fluid particles. We could do the same for the points in
__p_hase space and examine a small control volume in phase space, as shown in figure 6.1.
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systems having generalized coordinates (r™, p™) in the ensemble, the one-particle

The net rate of points flowing into the control volume should equal the rate of change
- distribution function represents the number density of systems having (r, p), .

of points inside the control volume. This leads to

M

2.8 ar®\ & @ ap®\ 9@ E
=3 W) _ ) l
S ot () - S (10 2) - 52 6]

£, 1, p)d°rd®p = number of systems in d’rd®p

This one-particle distribution function features a significant reduction of variables. For
one mole of monatomic gas with 6 x 10?3 atoms, the number of variables in the gen-
eralized phase space is 6 x 6 x 107, because of the three space and three momentum
* coordinates. The one-particle phase space for monatomic atoms, however, has only three
space coordinates and three momentum coordinates. The one-particle phase space can

i i=1
where 3p®) /8t = p%) and 8r¥) /8r = 7 represents the flow rate of the points. The £ |
left-hand side of eq. (6.2) is the net rate of points flowing into the control volume and 3

the right-hand side is the rate of change of the points in the control volume. The above 'jf_

relation can be further written as B be thought of as the projection of the N-particle phase space, similarly to the projection
af@) R ) AL ) : { of a volume _in thrcc—t_iimcnsional space into the area of a two-dimensional space.

— +> 0 x G s & =0 (6.3) = With the introduction of the averaging method to obtain the one-particle distribution

o = ar P ap function, one can start from the Liouville equation, eq. (6.3), and carry out the averaging

over the space and momentum coordinates of the other (N — 1) particles. This procedure
leads to (Liboff, 1998)

g dr dp of

¢ where we have used 37 Jor® +8p® /8p® = 0, which is a result that we will obtain"_'
in chapter 10 on the basis of the Hamilton equations of motion. .
Equation (6.3) is the Liouville equation that governs the time evolution of the
N-particle distribution function f®). The equation is valid for all classical systems ]
and has quantum mechanical counterparts for quantum systems (Liboff, 1998). It has-a :
large number of variables since # is of the order of 1023, that is, the Avogadro constant; .
in macroscale systems. Direct solution of the Liouville equation for nonequilibrium
systems is impossible, not only because of the large number of variables, but also because.
we are hampered by the necessity to determine the exact initial states of the ensemble. 2
However, the Liouville equation provides a good starting point for further simplification. 2
The Boltzmann equation, to be discussed below, is one example. In chapter 10, we will ‘:
develop another approach for transport problems, the linear response theory, based on 3
the perturbation analysis of the Liouville equation.

where the subscripts (r and p) in the gradient operators represent the variables of
the gradients:

of . 8f. Of.
Vrf=—f‘X v fZ
ax

of o Of . : “df
Vof = L b+ by + L p
P 3Px | 27 apy Py apz Pz

_U_lfli.ke the 2n-phase space for the derivation of the Liouville equation, in which one
point represents a system and the flow lines of the points do not intersect, the particle as
represented by the one-particle distribution function interacts with other particles in the
§ystem, and thus the number of particles along a flow line in the one-particle phase space
is no longer conserved. The right-hand side of eq. (6.5) lumps the interaction of this one
- particle with the rest of the particles in the system and represents the nonconserving
- nature of the one-particle distribution function. This scattering term should not be

cons_,ldered as a derivative, but rather as a symbol representing the net rate of gaining
particles at point (r, p). We will give more detailed expressions for the scattering term
" in section 6.2.

Equation (6.5), together with the expressions to be given in section 6.2 for ( gﬁ) 5

T 13 l] [h . A - ) a; I c
. Isca ed the Boltzmann equation or Boltzmann transport equation. Rather than using
! momentum p, we can also use velocity v(p = mv) or wavevector k(p = A k) to rewrite
.the Boltzmann equation as

6.1.2 The Boltzmann Equation

The Liouville equation involves 2n variables in the phase space, plus time. This large
number of variables makes it impractical in terms of the boundary and initial con
ditions, as well as for analytical and numerical solutions. One way to simplify the
Liouville equation is to consider one particle in a system. This is a representative particle
having coordipate r; and momentum p;; each of the vectors has m components, that is, 3
m degrees of freedom. We introduce a one-particle distribution function by aver: ._
aging the N-particle distribution function over the rest of the (N — 1) particles in__-
the system, :

!
FO 11, p) = ﬁ [ [ 05 6. devapa....dpw (64

2 a F 3 ) ,
where, again, each vector ; and p; has m degrees of generalized freedom, so that 3*}: +VveVrf+ - Wf= (5{) ’ ' (6.6)
n =m x N, as we discussed before. For a monatomic atom, m = 3, and for a diatomic . <
atom, m = 6 (neglecting the electronic states). The factorials are normalization factors. _
For simplicity in notation, we will drop the subscript 1 and use (r, p) as the coordinates ﬁ +veVif+ E o Vi f - < g ) 6.7
and momenta of the particle. Since £ (¢, r®, p™) represents the number density of a1 . h ET 6.7)
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where F = dp/dt is the external force acting on the particle. The use of / in eq. (6.7) =
implies that the Boltzmann equation can also be applied to quantum particles as long as
we do not consider the phase coherence of the particles. In connection with the discussion
in the previous chapter on the group velocity and the crystal momentum, it should b
| understood that v in these forms of the Boltzmann equation is the group velocity, while
| i kineq. (6.7) is the crystal momentum. In the following treatment, we will use p :
and k as momentum variables interchangeably. Variables v or p are often used
continuum variables when treating gases, and variables k are often used for treatin
electron and phonon transport in crystals. Please be reminded that v = Vi is the group.
velocity. ’

The Boltzmann equation gives the distribution function at r and p (or kor v) in
phase space. Typically, we are interested in the quantities averaged over p, for example, -
the average velocity and energy. If the solution of the Boltzmann equation is known fo;
a problem, we can calculate the volume-average of any microscopic property X of th
particle from

(xX@) =5 LXCRF = [x@wrax G
2 | .

where s is the polarization, if appropriate. When going from the summation over discrete ;
wave vector k to the integration, the factor (271)3 comes from the fact that the volum

There are two directions in exploring the solution of the Boltzmann equation. One is
to solve for f and to calculate the average quantities of interest according to eq. (6.8).F
This approach will be used in section 6.3 to derive constitutive equations such as the’
Fourier law and the Ohm law, and the Newton shear stress law. It will also be used in |
the next chapter when considering the classical size effects. The other approach is t’(‘g'};
take the moments of the Boltzmann equation, from which conservation equations such
as the Navier—Stokes equations can be derived. 1

The above arguments leading to the Boltzmann equation are by no means a rigorou
derivation. The derivation of the Boltzmann equation from the Liouville equation i
fundamental topic in statistical physics (Kubo et al., 1991; Liboff, 1998). Here it i
appropriate to comment on the range of validity of the Boltzmann equation. We us
the one-particle distribution instead of the N-particle distribution function and assume
that this one-particle distribution function is an appropriate representation of all th
particles in the system. This will only be true if the N-particle distribution function can
be factorized as the product of the distribution function for each particle, that is, :

F® @™ p®y = (O, 1, p) Pt 12,00 [P ey (69)

Such a factorization means that the particles in the system are quite independent of each’
other, even though collisions between particles can affect the one-particle distribution
function. Consider the collision of two particles. Before and after the collision, the:
distribution functions of one particle are independent of the coordinates and momentum
of the other particle. This is the so-called molecular chaos assumption. Such factorization .
is only valid when the interactions of the particles are infrequent. Thus, the Boltzmann
equation is appropriate only for dilute systems such as molecular gases, electron gases,-
phonon gases, and photon gases. It is not valid for dense fluids such as liquids. 'I'hc'.i

[

*RTICLE DESCRIPTION OF TRANSPORT PROCESSES: CLASSICAL LAWS 233

Boltzmann equation does not include explicitly wave effects-such as interference and
tunneling. Extension of the classical particle picture to the quantum wave picture involves
the so-called Wigner function (Liboff, 1998), which we will not discuss heré. Despite
these restrictions, the Boltzmann equation is powerful and can be applied to a wide range
of problems from nanoscale to macroscale.

6.1.3 Intensity for Energy Flow

The single-particle distribution function, f is a scalar in the one-particle phase space.
Sometimes we try to map this and related quantities into the real space r. At each point
in real space, the possible wavevectors lie in all directions. Along each wavevector .
direction, the particle moves at the group velocity v, (k) and the energy flows at the rate
of E x vg(k) x f for the specific quantum state. In section 3.4.4, we introduced the
differential density-of-states dD(E, k) as

No. of States within (E, E + dE) anddQ  D(E)
VJE4AQ T 4gm

where the last equality is valid only for isotropic media. The rate of energy propagating
along this direction per unit solid angle is then

dD(E k) = (6.10)

1(t,E,k) = E x v(k) f(t, 7, k)d D(E, K)
1 Ml _
= - E x v @ f (.1, D(E) (6.11)

In thermal radiation, E = hv for photons, and 7 is called the intensity. Majumdar
(1993) extended the intensity concept to phonons. Equation (6.11) shows that ihtensity
is a simple transformation of the distribution function. It is usually defined, without
referring to the phase space, as the power flowing along direction €2 per unit solid angle,
per unit frequency interval, and per unit area normal to the direction of propagation:

- Power
T dALdQdv

where dA | is a differential area perpendicular to the direction of propagation.
Comparing eq. (6.12) with (6.11), we see that the solid angle, which is usually
considered as an angle in real space, is actually sustained by the ‘wavevectors in the
phase space. In phase space, intensity is a scalar. Without considering the phase space,
it is difficult to tell whether intensity is a scalar or a vector. Although the concept of
intensity is widely used in thermal radiation, it is not very common in the treatment
of charge transport since the major concern is not energy but the flux of charges. In
the following treatment, we will use both f and the intensity, in accordance with the
customs in each field, while attempting to present different carriers in a parallel fashion.

Iy _ (6.12)

6.2 Carrier Scattering

The key to the Boltzmann equation lies in the description of the scattering term. This

term, in its most general form, is a complex multi-variable integral that contains the
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where d°r = dx dy dz means integration over the whole volume of the system and

A= 7 I o * ry/ 3 5
Figure 6.2 Collision of two particles with 2 @ My = (IH|f) = _/q}fH et (6.14)
initial wavevector and energy (k, E) and
(k, E1). After the collision, the two
particles are at states (k’, E) and (k], E7).

Lo is called the scattering matrix. The delta function, §(E s — E;), defined as
) |
1 E; = Ey

: =y = 00
distribution function, making the Boltzmann equation an integro-differential equation S [ 0 E;#Ef and f —oo 8(x)dx =1 (6.15)
that is extremely difficult to solve. The relaxation time approximation is often made to
simplify the scattering term. In this section, we will first give the general expression for.
the scattering integral and then introduce the relaxation time approximation, followed

by a more detailed discussion of the scattering mechanisms of various carriers.

is a manifestation of the requirements of the conservation of energy. According to
eq. (6.15), 8(Es — E;) has a unit of J=1. Equation (6.13) is often-referred to the Fermi
golden rule. It should be kept in mind that E; and E 7 are the initial and final total
- energies of the two-particle system. ‘ :

The Fermi golden rule gives the transition rate from one set of quantum states of the
two particles into another set due to the scattering. The scattering term in the Boltzmann
We consider the collision process between two particles as shown in figure 6.2. After the “ equation is the net gain of particles in one quantum state. This net gain consists of two
collision, the energy and the velocity of each particle may change. Cleatly, the collision ; components: one is the increase in the number of particles due to scattering from other
is a time-dependent process. The rigorous way of dealing with the collision process quantum states into the quantum state under consideration (“in-scattering”); the other
is to solve the corresponding time-dependent Schrodinger equation for the combined is the decrease of the number of particles due to scattering from the current quantum
system of both particles. This approach is, however, usually very complicated and not state to other quantum states (“out-scattering”). We again take the two-particle scattering
practical. A simpler way to treat the collision is to use the perturbation method (Landau process as an example. The initial wavevector of one particle is k and it collides with
and Lifshitz, 1977). This method considers the time-dependent interaction between the another particle with a wavevector k;. The corresponding distribution functions for the
two particles as a small perturbation in energy, H'(r, 1), from the original steady-state, -two particles are f(t, r, k) and f(, r, ky). After scattering, the momenta of the two
non-interacting energy Hy of the two particles, such that the total system energy is particles are k' and k} and their distribution functions are f(z, v/, k') and f(r, ¥/, K,),

SN T respectively. The scattering term for the particle at state k can be expressed as -

6.2.1 Scattering Integral and Relaxation Time Approximation

af
(E)c === Z fle, e, K) f@t,r,k)W(k, k; — K, ki)

For example, when we use the harmonic oscillator approximation for the actual inter;

atomic potentials, the higher order term O[(x'— x0)1in eq. (2.51) can be considered as kLK K,

the perturbation from the harmonic potential. In quantum mechanics, we must treat H as 728 Ly >

an operator and solve the Schrédinger equation for the two-particle system with the new = + Z fi, e, K)fe, r, KHDW K, ki > k, k)
H, the Hamiltonian of the system, as in eq. (2.22). By treating H’ as a small perturbation = ki kK,

to the unperturbed Hamiltonian Ho, the solution of the Schrédinger equation for the new
H can be obtained through the perturbation method and expressed in terms of the wave
functions ¥ of the unperturbed two-particle system with Hamiltonian Hy. Using the
perturbation solution, one can calculate the probability for the system jumping from one
quantum state W; to another quantum state U ¢, both being accessible quantum states of
the original two-particle system. The rate of this transition probability is the transition
rate and is given by

=—-K f f@&r k) fr k)W k — K, k;)d’k d*K d>K|
+K f fnX)f@r kDWE, k) > Kk, k) kid®kKd°K]  (6.16)

_where K = V3/(@2x) is a factor that converts the summation over wavector into
gtegration over the phase space. The first term represents the rate of particles being
scattered out of quantum states determined by k and ki, and the second term represents
the rate of particles scattered into the quantum state. We have used the same r assuming
that at the point of scattering all the particles are at the same location. T,his means
that the pa_rticles do not have a finite volume. The integration must be done over all
LS . ‘ :tlilter ;I;?smble ,panicles in Fhe in%tial states k; and counts all possibilities of the final
_ TM,-fS(Ef _E) (6.13) : es ax;d k7. For a particle with only translational motion, as we will assume from

cre on, d°K = dkydk,dk,. Equation (6.16) thus contains a nesting of nine integrals.

F_ 2
W--—k

2 .
8(Es — E;)

f w5 H'W;d’r

2 : ;
= ZC |G f)PS(Es — o)
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However, the conservation of energy and momentum, which is includ and thus

probability, eq. (6.13), and the scattering matrix | J
E®K) + Ek) = EK) + E(k)) (6.17)

ed in the transition
| f—fo=CeT™ (6.24)

So the relaxation time is a measure of how long it takes for a nonequilibrium system
to relax back to an equilibrium distribution. Often, the relaxation time is expressed |-
in terms of the energy rather than the velocity, ¢ = z(E), which implies isotropic
scattering.

The scattering may be caused by the coexistence of different processes and a relax-
ation time can be defined for each process. The total relaxation time, 7, can be calculated
.from individual relaxation times, 7, according to the Matthiessen rule,

1 1
—=>"= (6.25)
T 7 ‘L'j

k+k =K +Kk) (6.18
lead to a reduction in the number of integrals. Also, the following reciprocity relation
Wk, ki — K, k) = WK,k =k ki) (6.19) 5

arising from the principle of detailed balance, is valid and can be used to writ;

eq. (6.16) as

(E) —-K / W x Lf &1, K £, 1 1)
3t‘ c : The Matthiessen rule assumes that the scattering mechanisms are independent of each
other (Ashcroft and Mermin, 1976). ’ :

Under the relaxation time approximation, the Boltzmann equation becomes

F=Jfo
T

K KD K P K K 620)
Combining eqé. (6.20) and. (6.7), we see that the Boltzmann equation '

' F
%£+v.vrf+;i‘.ka

3 F
_f+v._V,f+—n;.vvf=_
t N

ot (6.26)

where we have used v rather than k as the variable. The corresponding equation
using k as the variable is, from eq. (6.7), ’

= -k [Wx1f@r 06 n k)
- f@t, 1K) f(t,r,‘k’l)]d3k1d3k’d3k’1 (6.21)

y+vovrf+Equf=_f_f°
] i T

o1 (6.27)

is a complicated integral-differential equation with seven variables (f, T, k), due to our;

assumption of translational motion only. ' . 5
The integral-differential Boltzman equation, eq. (6.21), is very d.1fﬁc.u1t to solve in.
general. Most solutions rely on a drastic simplification of the scattering integral by th

relaxation time approximation

Equations (6.26) and (6.27) are also called the Krook equation in gas dynamics
21 (Chapman and Cowling, 1970). In the rest of this section, we will discuss in greater
detail the scattering mechanisms and the relaxation time of various energy carriers.

g) _ _f-fH(TE, ) (6.22): 6.2.2 Scattering of Phonons
), z(r, k) : ;

The derivation of the phonon modes in chapter 3 is based on the assumption of harmonic
" interatomic potential. Under this assumption, the lattice waves are decomposed into
! normal modes which do not interact with each other. For such an ideal case, there is no
| resistance to heat flow and the thermal conductivity is infinite. In contrast, real crystals
; : clearly have a finite thermal conductivity, which is caused by the scattering of phonons.
In a pure dielectric crystal, the phonon scattering is primarily due to the scattering
of phonons among themselves. Anharmonic force interaction is the source of scattering |
among phonons. The second-order term in the Taylor expansion of the interatomic
2 potential around the equilibrium point, as in eq. (2.51), gives the harmonic oscillator
for most situations. / . model that we used to represent phonons. By considering the third-order term in the
We can understand the meaning of T easily by neglecting the spatial nonuniformity . potential as a perturbation to the original Hamiltonian, H' ~ x3, and through the use of
of the distribution function. Bquation (6.7) becomes § + . the Fermi golden rule, it is found that this anharmonic force term acts as a mechanism for
two phonons to merge into a third phonon or for one phonon to split into two phonons,
as shown in figure 6.3 (Ziman, 1960). Such scattering processes are called three-phonon
- scattering. The two-particle collision picture shown in figure 6.2 must now be modified

where 7(r, K) is the relaxation time, and fo represents the equilibrium dis.triblllticfn ot: the*
carriers, such as the Boltzmann, the Fermi-Dirac, and the Bose-Einstein dismbutmr}s_
given in chapter 4. The relaxation time approxi-mation is also called the BGK approxi-
mation in gas dynamics in honor of the joint work of Bhatnagar, Gross, and Krook
(1954). In chapter 8, we will go through the scattering integral.ls more .careﬁ‘ﬂly for the
case of electron—phonon scattering and show that the approx1mat10.n 1s .valu.i only for
elastic scattering. Despite this limitation, the relaxation time appfox1mat.10n is actually
used widely, even for processes including inelasti_c scattering, with correct end results

of f—-r 623
ar :

" T
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Figure 6.4 Three-phonon
kv, o 3 (2) normal and (b) umklapp
ViV, y 8 scattering processes, using the
merging of two phonons into one
as an example. The gray region
represents the first Brillouin
zone. In the umklapp process,
K}, which is the sum of k; and
k3, is outside the first Brillouin
zone. It is brought back into the
first Brillouin zone by the
reciprocal lattice wavevector G.
Energy must be conserved
during both scattering processes.
The normal processes in (a) do
not create thermal resistance
because the merged phonon
carries the same amount of
energy and momentum as the
original two phonons. Umklapp
scattering causes thermal
resistance because the momenta
of the two original phonons are
changed after scattering.

ky,vy

@ ®)

Figure 6.3 Three-phonon scattering processes: (a) two phonons merge into one (annih.ilatiq?:
process); (b) one phonon splits into two (creation process). 4

in accordance with figure 6.3, with corresponding changes to the general sFalteng:
integral expressed by eq. (6.20) and the energy and momentum copservatlon rules
expressed by egs. (6.17) and (6.18). For the merging of two phonons into one, energy

conservation gives i

hvi + hvy = hvs (6.28):

and a similar equation can be written for the process in which one phonon splits
into two. . .
Momentum conservation during the three-phonon interaction processes takes a
special form. For the phonon merging process, the momentum conservation can be
written as : = ' '
In real crystals, there are defects such as impurities, dislocations, and grain bound-
aries. These can all scatter phonons; details can be found in the given references (Ziman,
1960; Klemens, 1958). For impurities, the scattering obeys the familiar Rayleigh law

ki+ky—ks=G (6.29_}

where the reciprocal lattice vector G can be zero or a linear .cornbination of the reci-
procal lattice vectors. If (kq + ky) falls within the first Brﬂloum zone wavevectf)r, thc.n
G = 0; otherwise, G # 0 (figure 6.4). The latter result comes from the reqquement
that the phonon wavelength cannot be smaller than the lattice constant, as discussed
in chapter 3. The G = 0 phonon scattering process is called the normal process and
the G # 0 is the umklapp process. Without the umklapp process, the tl'lermal con-
ductivity of a crystal would still be infinite because in a nonnallscat.tenng process,
the generated third phonon preserves both the energy and the direction of the twa
original phonons. The extrareciprocal lattice wavevector in the u.mklapp process changes
the net direction of phonon propagation and thus creates resistance to the heat ﬂo.\'{
Peierls, 1929). )

\ The evaluagiou of the scattering integral for phonons is very difﬁcug5 {ZZSI)nin, 19!::0}.
: ions for the relaxation time, based on eq. (6.20), have been ' ¢ : S : . :
112?:12:3%6?82:;?;?1: f1”;}_;1;3)8.SI;((;IrlSexample, an often-used expression for the three-phonon g‘at Incorporating the bound.ary scattering with the Matthiessen rule is questionable
. : ecause the boundary scattering is a surface process whereas the phonon—phonon and

e % 5 phonon—impurity scattering occur inside the volume. In chapter 7, we will consider
17! = Be /T 7342 © o (630) _ many size effects by imposing interfaces and boundaries as boundary conditions of the
z : Boltzmann equation rather than being based on the Matthiessen rule. Although 7, can
include several potential mechanisms, typically, in a certain temperature range, there
is a dominant scattering mechanism. We will come back to this point when discussing

thermal conductivity.

7l = Avt (6.31)

Boundary scattering is also sometimes included in the total relaxation time, using the
Matthiessen rule. The relaxation time due to boundary scattering is of the order of

T, ' =bsv/L (6.32)

where L is a characteristic length, such as the diameter of a circular rod for heat
conduction along the axial direction, and b, is a shape factor that can be modeled
similarly to the radiation shape factor (Berman et al., 1955).

" The total relaxation time is obtained by combining the expressions for individual
Telaxation processes according to the Matthiessen rule. We should point out, however,

where B and b are constants and 8 is the Debye temperature. The va}ues of B and _5- £
for different materials can be obtained by matching the model predictions for the 5
conductivity with experimental results, as we will see later.




J lcally much weaker. An electron can create ot annihilate a phonon in the scattering
o n N .
' process, and must obey the energy conservation and momentum conservation during the

/
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Phonons cannot be acted upon by external force. Under the relaxation time - where we have used

approximation, the force term in eq. (6.27) drops out in the phonon Boltzmann equation.

VeV, f = vﬂ

: os

s 18 _the distance along the direction of propagation and v is the speed of light in the
medmu?. The term. Vi f inthe Boltzmann equation for photons drops out because photons
do n.ot interact with external force. The elastic scattering term can be obtained from
solving the Maxwell equations. A familiar example is the Mie scattering theory, which
represents the full solution of the Maxwell equations for a plane wave interacting with

a spherical particle with given optical constants (Bohren and Huffman, 1983).

6.2.3 Scattering of Electrons

,Electrons are predominantly scattered by phonons. Electron—electron scattering is typ

process. For a phonon creation process, the energy and momentum conservationrules are

Ei=Ef+hv As mentioned before, for thermal radiation it is customary to use intensity rather than
the distribution function. Using the intensity notation, eq. (6 i
Y - o w3k y , €q. (6.37) can be written as
g al, L —1Io 1/8L
where hv, and k, are the energy and wavevector of the created phonon, respectively s A i v\ ar stic (=t
3 ¢,elastic

Again, the process can be a normal or an umklapp one, depending on whether G =

or not. In most cases, the dominant scattering process has G = 0.
In metals, at temperatures higher than the Debye temperature, the number of

wh?r§ A I is the photon inelastic scattering mean free path, and Iy is the blackbody
: nun ! radiation intensity, as we have proven in chapter 4. Here we have added the subscript v

phonons is proportional to temperature 7', as the temperature independent specific heat § to denote that the quantities are frequency dependent. Using the terminology that is more
suggests. The more phonons, the more chance that the electron will experience scat-Sa2sie - frequently used in thermal radiation, the absofption coefficient is the inverse of inelastic
scattering mean free path, ‘

tering by phonons; consequently, the electron—phonon relaxation time is (Ashcroft and 2

Mermin, 1976)
1 1 4w

A vt — T (6.39)

where the last equality is the expression we introduced in eq. (5.40) and is valid only
;Qr a homogeneous medium with « as the imaginary part of the complex refractive
index. For other systems such as a system with particulates, the absorption coefficient
- can be obtained from solving the Maxwell equations (Bohren and Huffman, 1983;
'.': Slegel. and Howell, 1992). The elastic séattering term is also divided into two pe;rts: thf;
9ut»g011}g scattering, which is proportional to the scattering coefficient, and the incoming
scattering, v

Scattering in semiconductors is more complicated and one must determine whether
the scattering is.caused by acoustic or optical phonons. The optical phonons can be
further divided into nonpolar, such as in silicon and germanium, or polar, such as in"_'
gallium arsenide (GaAs). In chapter 8, we will discuss in more detail the electron—3
phonon scattering in relation to energy exchange mechanisms. Impurity scattering i
semiconductors is also a very important mechanism. Refer to Lundstrom (2000) an
Hess (2000) for a more detailed discussion of various electron scattering mechanisms, i

-a- HE) L (2
'i AR (6:40)
6.2.4 Scattering of Photons | ; SR ¢,elastic, in
. : . | where oy, is the scattering coefficient. The i i ing i .
Photon scattering is often divided into two parts: the inelastic and the elastic processes. 1 2 BREe e incoming scattering is often expressed as
In the inelastic process, photons are absorbed or emitted. The absorption coefficient 1 [al, 50, el oy
often used to represent the process. Under the relaxation time approximation, inelasti 73 €77 TN 0 f L,(Q)¢ (2 — Q)dQf (6.41)
¥ o1

scattering that includes absorption and emission of photons can be expressed as

(gi) = _f-f (6.36) :
c,inelastic ;i

. Where ¢ is callef.i the? scattering phase function, representing the fraction of photons
4 .scattere.d ﬁ9m direction £ to Q per unit solid angle of the incident direction. The
gltzlgratlon in eq. (6.41) is thus the total radiation scattered into the 2 direction. The
final equation, which is called the equation of radiative transfer, b ieg
e nsfer, becomes (Siegel and

at T

and the steady-state Boltzmann equation becomes

Uf_i{ = f-h I (?ﬁ) (6.37)
at ¢, elastic

al, aan P
s = Kevly ol + o I(Q)p(Q — Q)a’ (6.42)
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where the extinction coefficient, K., = o, + 0sv, combines absorption and outgoing’:

scattering into an extinction term.

Although the equation of radiative heat transfer, eq. (6.42), looks quite different:
from the Boltzmann equation, eq. (6.21), the above explanation illustrates that it does
come from the Boltzmann equation. This point was exploited by Majumdar (1993
who transformed the phonon Boltzmann equation into a form that is similar to th
equation of radiative heat transfer by introducing phonon intensity. We see that th
analogy is natural because all of these equations originate from the Boltzmann equa
tion. For electron transport, the intensity concept is not customarily used, althoug
it can be similarly introduced, not in terms of the energy flux but in terms of th

particle flux.

6.2.5 Scattering of Molecules

In eq. (1.37), we gave the mean free path between successive collisions of tw

molecules as
m

A=—
2mpd?

where d is the molecule diameter, m is the molecular weight, and p is the density. Fr

the mean free path, the relaxation time can be obtained,

1 .ovd 27 pdd?
T A m
where ¥ is the average speed of the molecules,

o0 00 0o

B 8caT
v=f//vf0(v)dvx dvy dv, = ==
000

and fp is the Maxwell velocity distribution given by eq. (1.26).

6.3 Classical Constitutive Laws

Using the Boltzmann equation under the relaxation time approximation, we can inves-
tigate the transport of energy carriers. We will show in this section that classical laws,
such as the Fourier law, thie Newton shear stress law, the Ohm law, and so on, are special |
solutions of the Boltzmann equation under the assumption of local thermal equilibrium.
The limitations of this assumption can be appreciated through the derivations. . :

Consider the Boltzmann equation under the relaxation time approximation, that is g

eqs. (6.26) and (6.27). Let us introduce a deviation function g,
g=rf—-ro
and write eq. (6.20) as
3g . 3fo

s ol : F F
=4+ =—4veVifo+veVig+ —eVyfo+—eVyg=—
> m m T

at ot
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All the diffusic.:n.iaws can be obtained under the following assumptions: (1) the transient
terms are negligible; (2) the gradient of g is much smaller than the gradient of Jfo; and
similarly, (3) g is much smaller than fy. Under these assumptions, eq. (6.47) becomes

g=—1 (v o Vefot % . vvfo) ' (6.48)
or
f=fo-t (v “Vefot e vao) (6.49)

. This solution for the distribution function can also be obtained by treating g as the first-
. order expansion of f (fy is the Oth-order expansion) and uéglecting higher order terms.
. The Boltzmann equation thus obtained is said to be the linearized Boltzmann equation.
From the distribution function, we can calculate the flux of various quantities of interest
(charge, momentum, energy). We will narrow our focus next to examine some of the
fluxes associated with various carders.

6.3.1 FOurier Law and Phonon Thermal Conductivity

We first consider the heat conduction by phonons. In this case, there is no external force.
Since the Bose—Einstein distribution

(6.44) ; 1
A 0 =—
,, ' S (ro/kpT) —1 o
b ' depends only on temperature, we can write eq. (6.49) as
(6.45). d '
2 f(r, k) 5 fo— rj;ﬁv o VT - (6.51)

% where T is a function of coordinate r, i.e., T(z, r). We have dropped the subscript r in

.- the gradient operator. The nonequilibrium carrier distribution depends on both r and v.
. For simplicity, we consider a temperature gradient along the x-direction without loss
. of generality. We can calculate the heat flux from

1 oo o [o.0]
@=3 % 3 3 ¥ uwhef (6.52)

5 ky1=—00 ky1=—00 k=~

> wperé § represents the summation over all polarizations. It is interesting to compare
this expression with eq. (5.152) which we used in deriving the Landauer formalism. In
- €4. (5.152), we are considering only the heat flux going from point 1 to point 2 but
: lhere. also exists a reverse heat flux from point 2 to point 1. In eq. (6.52), we are
01_151dering the net heat flux at any constant x-plane inside the domain. There are carriers
: Boing across the plane in both directions, as determined by eq. (6.51) and sketched in
ﬁgurfs 6.5. Following a similar procedure to that used before, we can transform €q. (6.52)
. first mtf) an integration over all wavevectors and then into an integration over energy
4 ;ﬂd 50{1512 angle, using a spherical coordinate system for the wavevectors as shown in
=ir. igure 6.0.
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with the following expression for thermal conductivity

A
y
hk,
- o Wmex [ T
Gk 1 20 o 2
! : k= 5 Tv°Cy 8inf % cos” 8d0 3 dw (6.56)
R3S / o Lo
Figure 6.5 In the calculation of heat ﬂux'at a ; ——%
constant x plane, carriers moving in all dl‘rCCttl.(:: SR + where Cy = AwD(w)dfo/dT is the specific heat per unit frequency at frequency w and
may “;’“""’:.“’ > “‘;:"‘fe‘l‘::t?‘;’; ::pt::e;;d“vx"“o;thé LAREA o temperature T. When v and 7 are isotropic, eq. (6.56) can be integrated to
epending on ; ;
carriers. Note that we align k; parallel to x, but the s

k-space origin is located at . O e - / 0?C, doo 6.57)

=7 In the case that both  and v are independent of frequency, the above expression reverts
"= 1o the kinetic relation, eq. (1.35), that we obtained in chapter 1,

3

oo 0

te=amy [ | [ wchos i diey dkefor/1?

5 oo —oo— 1
2:" e _ k=CoA (6.58)
o i D@) 655
= do f fvcosﬁfiwf sin@de ; do 4 £ E
an where A = tv is the phonon mean free path.
0 o Lo Our previous discussion suggests that the relaxation time is highly frequency

where wmax represents the highest phonon frequency, such as the Debye frequenc

- 0 the ab ation. we obtain ependent. On the basis of the Mathiessen rule, and considering the following phonon
the Debye model. Substituting eq. (6.51) into the above equation,

cattering mechanisms: (1) phonon—phonon umklapp scattering, (2) phonon—impurity
_ scattering, and (3) phonon-boundary scattering, we have

qu(x) b Y +
o (o 1 bsv 4 —8p/bT 3 2
e dfo dT D(w) . — = — + Aw* 4+ Be /5T T3, (6.59)
= / d@ f /vcosehw [fo—rﬁ—d;vcosﬂ —4—7_[—sm9d9 dGF’. T L :
0 O g0 p .-We cautioned before that our treatment of boundary scattering is very crude and
[0}

T 2dx
0 0

‘We see that the first term fo in eq. (6.51) naturally drops out .of the integration. This is,
because fj represents the equilibrium distribution and it contnb.utes an equal amou?t 0
energy going from left to right as in the reverse direction. Equation (6.54) can be writter

nexpression to calculate the thermal conductivity. There are three unknown parameters,
particularly A, B and b, since b, can be modeled (Berman etal., 1955). These parameters
.¢an be determined from fitting eq. (6.57) with experimental temperature-dependent
A thermal conductivity data. In figure 6.7, we show a fit of the thermal conductivity of
: GaAs (Chen and Tien, 1993). The thermal conductivity of a crystalline solid typi-
_cally shows a dome shape with a peak around 20 K, depending on the size of the
crystals. At high temperature, the dominant scattering mechanism is due to phonon—
-phonon scattering and thermal conductivity is approximately inversely proportional to

14T f d f 7v? sin @ cos? 0 x hwD(w) gi; do (6.54) 58 should be taken as a rough approximation. Substituting eq. (6.59) into (6.57), we obtain

as the Fourier law

dT 6.53
Jgx = —kz—; ( mperature,
1

Voh ko T (6.60)

Y' v practice, the high temperature dependence is often 7" withn = 1 —1.5. At low tem-

O [ > .perature, phonon-boundary scattering dominates heat conduction. Thermal conductivity

Figure 6.6 Polar coordinates for the momentum dT/dx 18 proportional to specific heat and also to the size of the crystal (Casimir, 1938),

components. Note that we align the momentum and % ko T3 (6.61)

space Cartesian components in the same direction.
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1. Ph;e]nons are ﬁispersive and their group velocity varies from the speed of sound ‘
at the Brillouin zone center to zero at the zone edge. The average phonon grou
3 Belo_cztly 1; much smaller than the speed of sound. e
. Optical phonons contribute to the specific heat but typi i i |
: s pically contribute litt]
] g}.;_x, due to tt:‘:el_r low group velocity and their high scattering rates o
. Phonon scattering is highly frequency dependent. High-fre uen-
- ¢
usually scattered more strongly than low-frequency ptuagr[:tcms.q Y D

10 2 T T T T T T T Tl T=T-TTTrTg

o Holland (1964)
A Amith et al, (1965)

T T
L1 11l

For ?:Sample. the simple kinetic theory based on eq. (6.58) leads to a mean free path

' for silicon of ~410 A. More careful consideration of the phonon dispersion and o gcal

. phonons (Chen, 1998) and experimental results (Ju and Goodson 1999) i.ndicatg that
the mean free path of those phonons actually canying the heat is ~‘2500—3000 A

longer than what simple kinetic theory would give. : R

100

111 Illll

THERMAL CONDUCTIVITY (W/cm.K)

] / ko
10 - /; eoavagl 1 |1:Nn‘

107 0! to? iy
TEMPERATURE (K)

6.3.2 Newton’s Shear Stress Law

. Toderive the .Newton shear stress law for gas, we again consider a one-dimiensional fl

i ?;ong the x-direction with the average velocity variation along the y-direction a: sh o

+ in figure 6.8. .Because the molecules have an average velocity superimpose:i on !T‘lg
random veloctt?, we can no longer use the Maxwell velocity distribution as given i

- eq. (1.26), which would lead to a zero average velocity. As an approximatig;neﬂui:

Figure 6.7 Thermal conductivity of GaAs, based on 2 model that considers phonon dis
sion and contributions from different phonon branches, k¢, from low-frequency transverse
phonons and ky, from high-frequency ones, and kz, from longitudinal phonons (Chen and

Tien, 1993).

The reader should be reminded that the fitting of the thermal conductivity model based ' finding one particle having velocity v
on eq. (6.57) and (6.59) with experimental data has some arbitrariness since the mode
also depends on the treatment of the density of states, the phonon group velocity v, and
the dispersion of phonons. Often, the Debye model is used with a constant phonon group
velocity. In addition, expressions for phonon-phonon scattering such as eq. (6.30) are
obtained with a number of assumptions that also involve phonon dispersion. The fitting
of the GaAs thermal conductivity data in figure 6.7 was based on Holland's model
(Holland, 1963; Chen and Tien, 1993), which considered, approximately, the changin‘g
group velocity of phonons as a function of frequency, and used different relaxation timi
expressions for different branches of phonons. It was found that, depending on how thi
dispersion is approximated, the experimental data can be fitted equally well with differen
sets of parameters. Thus, extracting the exact relaxation time is, to a large extent, a s '
unsolved question even for bulk materials. Another point that should be mentioned i
that although the normal three-phonon scattering process does not create resistance
it can redistribute phonons and thus indirectly affect the umklapp scattering process
A phenomenological model, based on displaced equilibrium distribution for the normal 3
process, was established by Callaway (1959) to take the normal scattering process &
into consideration and this model has become a standard in thermal conductivity 251
modeling.
Rather than being a convenient way of calculating thermal conductivity, eq. (6.58)2
is often used to estimate the mean free path on the basis of the experimental values 0
thermal conductivity, the specific heat, and the speed of sound in a material. This wa
of estimating the phonon mean free path, however, usually leads to an underestimation
of the mean free path for those phonons that are actually carrying the heat because 0

the following reasons (Chen, 2001a):

m
ZJTKBT

P(v,, Vy, V) = (

+ where u'is the average velocity along the x-direction. On the basis of this distribution
t can be shown that the average velocity is indeed u (this is left as an exercise). Aésum:

ing that the number density of i ; . .
o0ty is ity of particles is n, the number density of particles having

m

" folvg, vy, v,) =nP i Pujtl
ity Uy, Uz) = nP(vg, vy, v;) =n e~ M= huyu)/2ep T (6.63)

2wkpT

U

o

A 4

Figure 6.8 One-dimensional
laminar viscous flow for deriving
the Newton shear stress law.

: following displaced Maxwell velocity distribution is often used for the probability of

3/2 )
) oMl —u)* 2 +02) /25 T (6.62)

— =

R T P
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From eq. (6.49), the distribution function is 1
i Uo Bx (6.64) §

f=fo—tyyy == oy ]

The shear stress along the x-direction on a plane perpendicular to the y-axis can be
calculated by considering the momentum exchange across the plane,

© o0 o
Tey = / f / Uy[mvx]f dvx dv}‘ dvy
—00 —00 —C0
0 00 0
3 ou
et _i)i f / rv%mux—@dvx dvy dv, = ,U-—a—
3y ' ou : y
—00 —00 —00

mentum of one particle along the x-direction and the vy (mvy) f

where muv, is the mo o e 1ot e

represents the rate of momentum change along the x-directio!

molecules across the constant y-plane. Such a rate of change of momentum cqua!i

the shear force acting on the constant y-plane, according to Newtop’s second law. Thy

dynamic viscosity is

. 3o _
p:—/f/rvi (mvx)—%dvxdvydvz

32 ¥
=m2-m( i ) [e""”gﬂz"snduz

QTIICBT
i i U miaT) gy
2 —mvy KB
2 -mu_.,;‘(ZKBT)dU 2 o X d'b'x
X f vye vy | T
—o0

-0

ol Y A
In the last equation, we assume that the relaxation time 18 ?.constant alnd use vy = vx —¥
Carrying out the above integration, we obtain the following expression for the dynami

viscosity:

Inl writing the last step, we have used the mean free path expression [eq. (1.36)] an

t = A/{v), where the average speed of molecules is (v)

in example 1.1. A
Following a similar procedure, we can also cale
heat conduction and obtain the thermal conductivity for a gas as

b= () e = )

lculate the energy flux due to molecul

Thus the thermal conductivity and viscosity are related to each other, because all thes

- : 3 . . N ¢ £
quantities arise from the same MIiCroscopic carrier motion. The difference is that it

1 [misT o]
w=ntkpTl = il = (6.67) 48

= [8kgT/(xm)]'/?, as given:

“ARTICLE DESCRIPTION OF TRANSPORT PROCESSES: CLASSICAL LAWS 249

the shear stress we examine the momentum of the carriers, whereas for heat conduction
we examine the energy of the carriers. Relationships as such are often found between
kinetic coefficients. We will see similar relations in the next few sections between the
electrical conductivity and mobility, the electrical and thermal conductivity of electrons,
and the Seebeck and Peltier coefficients.

. Equations (6.67) and (6.68) for viscosity and thermal conductivity are obtained on
the basis of the relaxation time approximation. Enskog and Chapman, independently,
solved the Boltzmann equation in its integral form (Chapman and Cowling, 1970) by
series expansion of the distribution function, The final results for the viscosity and
thermal conductivity for gas molecules, approximated as elastic spheres, are (Vincenti

and Kruger, 1986)
_ 5 [mksT 15 /B _
- TeaN = o k=g (;)u (6.68a)

6.3.3 Ohm's Law and the Wiedemann-Franz Law

Having considered phonon and molecule transport, let us turn our attention now to
electron transport. We first limit our consideration to elecfron flow in an isothermal
conductor driven by an external electric field. The force acting on the electron from the
external field is

F=—e&=eVp. (6.69)

where e is the unit charge, the charge of an electron is (—e), &is the electric field, and
@e is the electrostatic potential that is related to the field by &= —~V¢,. Consider the
one-dimensional case with charge flow in the x-direction due to a field of magnitude &
Substituting eq. (6.69) into (6.49), we have :

f=fo-< (v;% - e_g’afﬂ) 6.70)

0x m 0vy
where Jo obeys the Fermi-Dirac distribution
1
exp (%5) +1

Here we are using E ; to represent the chemical potential. In chapter 4, we used E
for the Fermi level and y for the chemical potential, but in this chapter p is used for the
dynamic viscosity. Sometimes the distinction between the Fermi level and the chemical
potential is not rigorously made. In electrical engineering, chemical potential is usually

Jo(E,Ef, T) = (6.71)

- called the Fermi level. To calculate 8fp/8x in eq. (6.70), we should be careful where

we place the reference for E and E. In a semiconductor, the conduction band energy
is [Eq. (4.60)] - :

el T T,
E:Ec'i'%(kxﬁ-ky—l-kz)

‘Where E, is the location of the band edge. If we choose a common flat reference point

for E;, Ef, and E, such as shown in figure 6.9(a), it is clear that all three quantities
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Because of 1ts s%mplicity, we will choose figure 6.9(b) as the reference system in our
subsequent derivations. The end results are independent of the reference system. In the
chosen reference system ‘

A l .
Bl AZ i ¥
g ———=&, 3o _ 8o dEy _ _0fy dEy ,
G dx OEf dx =~ 3E dx (6.74)
r ——e i B, |
’ v ¥ Reference Level :_ and eq. (6.70) becomes
Figure 6.9 Choice of reference level for 0 @ o A
EfandE.In(a},Ef.Ec,a.ndEare f=fo+r Udﬁ?@_}_e_&’%a}f
relative to an absolute reference level. *dr 3E  m 3E v,
In this case all three quantities are dE *
x-dependent. In (b), E r and E are = fo+ tvx (d_f + eg,) % 675)
X JdE :

relative to E. and E is relative to an
absolute reference level. The arrows
in the dashed lines mark the reference
point of the quantities.

In eq. (6.74), we used the relation 8f/dEs = —3f/3E. The current density (A m—?)
is then :

oo [e e}
l o0

sz 2. 2 oS

2 =700 ky=—00 ky=—00

2 o o0 o0
=—Wff‘/‘evxfdkxdkydkZ

I, =

are dependent on x. It is easier, however, to measure E relative to E.. Fora given;-
carrier concentration, for example, the chemical potential should be measured relative |
to the bottom of the conduction band for electrons, as is clearly seen from eq. (4.64). ;
In this reference system, E y is actually the sum of the chemical potential (Ey — E) !

and E,, that is, Ef = (Ef — Ec) + Ec. The bottom of the conduction band E is TS
related to the electrostatic potential ¢, from the relation between force and potential (for . p. o dE; af;
electrons with a negative charge) = iy / U,%T (? +e ?) E}Eﬂ D(E)dE ; dQ
po_dE_ _dE_ do. 672 e Aol
. dx dx dx ‘ v e (dEf , 8 24 00 afb
Thus, —E /e is parallel to the electrostatic potential. We can usually take g = —E./e =3\ "2x +e g) / Tv D(E)B_EdE = 3 / tsz(E)a—EOdE (6.76)
0 0

Note the difference of the “potential” used in electricity from what we normally call
the potential energy. The sum of the electrostatic potential @, and chemical potential -
(divided by charge) (E s — E.)/(—e) is often called the electrochemical potential, @,

® =g, — (Ef — E)Je = —Eg/e . (6.73).

where we have used the same angle notation as in figure 6.6 and the integration over
the entire solid angle (4) is carried out over @ and ¢ similar to eq. (6.54). We see
_flI'OH__I eq. (6.76) that the driving force for current flow is the electrochemical potential
not _]LISt. the electrostatic potential alone. Because the chemical potential is related tc:
2 the carrier 'coucentmtion, the chemical potential gradient is representative of the carrier
concentration gradient and the current due to the chemical potential gradient is thus
the diffusion current. In metals and semiconductors, the relative importance of the

two .terms in the electrochemical potential is different, so we will discuss metals and
semiconductors separately.

Thus, in areference system as shownin figure 6.9(a), E s itself includes both electrostatic
and chemical potential contributions.

A different reference system, as shown in figure 6.9(b), is to have E ¢ and E alway
relative to E, while E refers to an absolute potential level. This reference system has
the advantage that E  always represents the chemical potential and E is independecif{
of x. This can also be seen from eq. (6.71), if we write (E — Ey) in the Fermi-Dirac |
distribution as

at” ! 52 b ‘ v 6.3.3.1 Metals

: 2 2
E—Ef=(E~Ec)— (Ef— Ec) = %(kx + ki +k) " (Ef — E) : The electron density in metals is very large, such that the transport does not affect the
chemical potential since the chemical potential is a measure of the electron number

Under this reference, the electrochemical potential is then . deusity. Bquation (6.76) b
P . Equation (6. ecomes
®=—(Ec+Ef)/e=p.—Effe.

e :
e p b}
where we have taken o, = —E./e. I = 3 g/ v?rgj-;!,D(E)dE =0& (6.77)
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defines a velocity which is called the drift velocity. It is the average velocity that the
electrons gain under the external field. Equation (6.83) is often used as the definition of
mobility (Sze, 1981). Because the drift current density is equal to envy, the electrical
conductivity is related to mobility through

o =enl, . 6.84)

where o is the electrical conductivity. Equation (6.77) is the Ohm law. The electrical 'f‘f
conductivity is & 1|

o= —% / v2;51;9D(E)dE§ L 678
where Ly is a notation to be used later. Because 3fo/9 E is zero everywhere except clos

to the chemical potential or Fermi level, we can use a delta function to approximate it, -
dfo/0E = —8(E — Ey). Equatior_l (6.78) becomes

For semiconductors, because the carrier concentration is not fixed, the mobility is a
measure of the mobile properties of individual electrons and thus is more useful. From
" egs. (6.81) and (6.82), we can write the following expressions for the mobility and the
diffusivity

rD Fézv% 3
R e ¢ J5° v (0fo/9E)D(EME _ ery
Me=~— fno foD(E)dE = 5 (6.85)
where subscript F represents the values at the Fermi level. Equation (6.79) means 0
that not all the electrons in a metal actually participate in carrying the current. Only : I [ 2y D(EYE i
those close to the Fermi level are actively contributing to current flow. From eq. (3.53), _3Mb 0 kg ” 656)

JEHD(EYE e

. where 7, is called the momentum relaxation time and the approximate relationship
' between the diffusivity and the mobility, eq. (6.86), which is valid only when the
distribution function obeys the Boltzmann distribution, is called the Einstein relation.

we have

so that
6.3.3.3 Wiedemann—Franz Law

The thermal conductivity of electrons can be derived in a similar manner to the derivation
- for phonons. Assuming no current flow, the thermal conductivity due to electrons can

In the above derivation, we have used the relation E = mv% /2.
be expressed as

k. = %Cev%tg (6.87)
where 7z is the energy relaxation time of electrons and is an average of T weighed
against the energy of the electrons, and C, is the volumetric specific heat of electrons.
g represents the average time for an electron to lose its excess energy. In general, the
energy relaxation time can be different from the momentum relaxation time. Typically,
however, the two relaxation times are very close. From egs. (6.80) and (6.87), and
neglecting the difference between the relaxation times, we get

6.3.3.2 Semiconductors

For transport in semiconductors, the carrier concentration changes with position a{'ldf
thus the chemical potential is not constant. We can start from eq. (6.70) to rewrite,

eq. (6.76) as

[
o= % [ve(eele) DEE+ [# Lo 6sif

The first term represents current flow caused by the electrostatic field and the second 8§

. . . 2z 2
term arises from the concentration gradient. Equation (6.81) is often written as ke mCvp 7° (kg

- 2= -8 —2
; L=—=TFF=2 (e) =245x 107°(WQK™)  (688)
) R enple &+ eagg (6.8 where we have used the specific heat of metal obtained in chapter 4, eq. (4.71). This is

' called the Wiedemann—Franz law and L is called the Lorentz number. Many metals obey
~this law, with slight changes in the value of the Lorentz number. For semiconductors,
‘the Lorentz number should be calculated since the relation between n and the Fermi
level depends on doping, but the magnitude of the Lorentz number remains close to the
yalue. The Wiedemann—Franz law is often used to estimate the electron contribution
{0 the thermal conductivity. For metals, it is sometimes used to calculate the thermal
conductivity directly from the electrical conductivity because electrons are the dominant
heat carriers in most metals.

d(an

J. = ehue Zte

where e is called the mobility [m? v~1s~1] and a is the diffusivity [m? s71. 'I'l'lc___-
- approximation is valid only when the diffusivity is independent of location (Hess, 2000);
The latter expression in eq. (6.82) is called the drift—diffusion equation. The electrosla!l‘lc st
field causes the drifting of electrons while the concentration gradient drives the diffuswljl_l
of electrons. The product of the mobility and the electric field

Vg = phe &
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6.3.4 Thermoelectric Effects and Onsager Relations

We have considered electron transport under the condition of either uniform temperature

or no current flow (heat conduction by electrons). Now, let’s examine the coupling of 7}
the temperature gradient with the electric field. In this case, both the Fermi level an

temperature are functions of location, and 3fp/9x can be expressed as ;

afo - dfo dE; E—EsdfodT :

fo fo dEf £ 8fo (6.89)

9% '+ 9E dx. 2. T2 dx
Substituting the above equation into eq. (6.70) and further into eq. (6.76), we obtain

; e o (dEy E—EfdT afo
Sl L SR 0 p(E)dE i
Je fv r(dx + T dx—}-e%’ 3E (E) (6.90

or

1dEy dT
Je—Lll(g""!‘ ;E)‘l‘laiz (_I‘t—) .\
}.

do dT &
=Ly (— E) + L2 (— E) (6.91

where Ly is the electrical conductivity as given by eq. (6.78), and L, is the couplin :
coefficient between current and the temperature gradient
’ Y R e '

= _—— E - Ef)—D(E)dE 6.92):

Lip= o [ 2(E - EpgpDE) 692)

The first term in eq. (6.91) is the normal electrical conduction due to the electrochemical

potential gradient. The second term arises from the thermal diffusion of electrons und
a temperature gradient. Under an open circuit, equation (6.91) leads to

do L1 dT dT
12 d (69

= =5

dx Ly dx dx

where S [V K11 s called the Seebeck coefficient, defined as

- —dd/dx _ Ln
T dT/dx ~ Ln

1 [v2c(E — Ep)2RD(E)IE
T el [ dRD(E)E

where the negative sign arises because we are dealing with electrons. Similar treatment
for holes would lead to a positive sign. This expression shows that the Seebeck coefficient
is a measure of the average energy of an electron above the Fermi level under the open
circuit condition, weighted against the differential electrical conductivity at each energy:
level, As we will show later, (E — E r) is related to the heat carried by an electron ali'd,‘
(E — E{)IT is related to the entropy. Thus the Seebeck coefficient is a measure of the;

average heat current carried per electron.

=TT R B O SN T I ST
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Equation (0.93) can also be written as
(P2 —D) =S ~-T)=-V (6.95)

where V is the voltage drop measured from point 2 (hot point) to point 1 (cold point).
Thus, in a conductor or semiconductor, a temperature difference generates a voltage
difference. Physically, when one side of the conductor (or semiconductor) is hot, elec-
trons have higher thermal energy and will diffuse to the cold side. The higher charge
concentration in the cold side builds an internal electric field that resists the diffusion.
The Seebeck voltage is the steady-state voltage accumulated under the open-circuit
condition. If the conductor is a uniform material such that S is constant, the voltage
difference does not depend on the temperature profile. This is the principle behind the
thermocouple for temperature measurement. A thermocouple employs two conductors
for ease of measuring the voltage difference. The same effect can also be used for power
generation. We will present more discussion in chapter 8 on thermoelectric effects for
energy conversion applications (Goldsmid, 1986).

We can also examine the heat flow when temperature and voltage gradients coexist in
the conductor. When calculating the heat flow, we must carefully distinguish the energy
flux from the heat flux because we are treating an open system with particles flowing
across the boundaries. Consider a small control volume of fixed volume. The first law
of thermodynamics should be written as ‘ ;

dU =dQ + E¢dN (6.96)
In terms of energy flux, the above equation can be expressed as
dl; =dJg — Efd], (6.97)
_where‘ Jqis .the heat flux, J g the energy flux, and J,, the particle flux. Considering again
one-dimensional flow along the x-direction, these fluxes can be expressed as -
Jg = / va‘fdv,cdvy‘dvZ and J, = / vy f dvxdvydu, (6.98)

so that the heat flux along the x-direction can be calculated from

Jg = f (E = Ef) vz fdvgdvydv, (6.99)

Substituting egs. (6.70) and (6.89) into the above expression and following the same
procedure as we used for the electrical current, we obtain the following expression for
the heat flux

1dEf\ :
Jy=Ly(&+-=L a2
4 1 ( Sy + Ly dx (6.100)
T}fllc ﬁrst term is Iihe energy carried due to the convection of electrons under an electro-
chemical potential gradient, and the second term is due to the diffusion of electrons

3 under a temperature gradient. The expressions for the coefficients are

I 2 afo
Loy = 3'/’(E —Ef tg-gD(E)dE: TLiy (6.101)
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Figure 6.10 Cooling or
heating at the junction of two
_ materials occurs because of

the difference between the
Peltier coefficients of
the two materials.

and

T f (E - Epfutees 8o D (E)dE (6.102)

Eliminating the electrochemical potential in egs. (6.91) and (6.100) leads to

Ly LipLy)\ ( dT dT
= wni2mal =1J, —k—
Lol (L22 Eu J\ dx ¢ dx

where

Ll .
=l rgamdk =, - 222 (6.104)

L Ly

I K1) is called the Peltier cOeﬁiczént and k is the electronic thermal conductivity.

" The relationship between the Peltier coefficient and the Seebeck coefficient is one of the'

Kelvin relations.
Equation (6.103) shows that in addition to the normal heat conduction by electrons,

the charge flow also carries another heat that is proportional to the current. When two'

materials are Jomed together and a current passes through the junction, heat must
be supplied or rejected at the interface because of the difference between the Peltier

coefficients of the two materials, as shown in figure 6.10. The energy absorbed (g > 0)

or rejected (g < 0) is

g =z -1/

depending on the sign of q. The rejection or absorption of heat depends on the current

direction and therefore, unlike heat conduction, the Peltier heat is reversible. This effect

has been used to make thermoelectric refrigerators and heat purnps (Goldsmid, 1986).
A third thermoelectric effect, the Thomson effect, refers to reversible heating or

cooling along a conductor when both a current and a temperature gradient are applied
to the conductor. The energy deposited inside a differential volume along the con-
ductor includes contributions from the heat flux variation and the electrochemical

potential drop,
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diidT d ( dT dT do
S, Frai=c i B | ety i [ S
“dT dx fd;;( dx) SJ"(dx> L

= ()t 2 (de +J2 | (6.105
- dT ) “dx ~dx | dx )

In the above derivation we have used egs. (6.91), (6.103), and (6.104). In the last
equation, the second term is due to heat conduction and the third term is due to Joule
heating. These two terms are quite familiar in a heat conduction equation. The first term,
however, is not familiar. It shows that heat can be absorbed or released, depending on
the current direction. This reversible heat absorption or rejection is called the Thomson
effect. The Thomson coefficient [V K~1] is defined as the rate of cooling

" T ds :
B= QC/ (-’e dx) = Tﬁ | (6.106)

where the negative sign in the first term of eq. (6.105) does not appear because a positive
Thomson effect is based on cooling whereas ¢ is the heat generation. Equations (6.104)
and (6.106), relating the three thermoelectric coefficients, S, IT, and S, are called the
Kelvin relations.

Throughout this section, we have seen that the transport coefficients are often related,
as for example in the Kelvin relations between the thermoelectric coefficients and the
Einstein relation for the electrical diffusivity and the mobility. The fact that many of
these coefficients are related has a more profound origin than a result from the Boltzmann
equation. Itis arequirement of the “time reversal invariance™ of the mechanical equations

-of motion, that is, the particles retrace their former paths if all velocities are reversed.

On the basis of this principle, Onsager (1931) derived the famous Onsager reciprocity
relations. Here we will give a brief explanation of the reciprocity relations without
proof (Callen, 1985). The flux of any extensive variable of a system (such as energy
flux, particle flux) or at a local point of a system can be expressed as a linear combination

. of all the generalized driving forces Fj,

Je =) LjF; (6.107)

where L j; are called the kinetic coefficients. The generalized forces are the driving
forces for entropy production. The Onsager reciprocal relations are

Ljy = Ly (6.108)

For local thermoelectric transport, the generalized forcesare V(1/T ) forheat flow and
(—V®)/T for electrical current, which leads to a relation between the two coefficients
Lz and Ly as given by eq. (6.101).

Example 6.1

The relaxation time usually depends on the electron energy as vt ~ EY, where
r differs among scattering mechanisms for electron transport (y = —1/2 for acoustic
phonon scattering, y = 1/2 for optical phonon scattering, and y = 3/2 for impurity
scattering). Derive an expressmn for the Seebeck coefficient of a nondegenerate
semiconductor.
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Let’s consider one-dimensional phonon transport as the case for study and neglect
the force term. We can transform the above expression by considering the energy flux
of the left- and right-hand sides:

f[fvka (r%+f)9$dw]dﬂ
4
=/[/ vehiw (fg—rux%)%dw]dﬂ (6.111) |
4 '

-where we have used 47 under the integral to denote that the solid angle integration is
over all directions. Eq. (6.111) can be written as ;

Solution: A nondegenerate semiconductor is one with the Fermi level inside th
bandgap. In this case, the Fermi-Dirac distribution function can be approximated by

the Boltzmann distribution

: 1 "E—Ef
f=——Fm—— ~exp (——) (E6.1.
exp (——Lia? ) +1 ksl

The Seebeck coefficient can be calculated from eq. (6.94). Assuming a paraboli
band, the density of states is

‘ 1 Im*\ 32 i

S WY 7

D<E>—ﬁ<h_z ) £

_3J, o :
9 J = —k—

: T Te= ko (6.112)

Substituting (E6.1.2) and the relaxation time into eq. (6.94), we obtain the Seebeck

| [ - EpEr+exp (-527L) dE

ef . [®py43/2exp (H%QL) dE

_ kB _Ef_ i E

=W [ kpT (y’+ 2)]
where Ey is the chemical potential, which can be controlled by doping. Using?
eq. (4.64) (E; = O for the reference system here), we can write the abov

]

2b() 6] el

b

coefficient as

where 7 is a weighted average of the relaxation time relative to the heat flux expression,
Equation (6.112) is the Cattaneo equation (Cattaneo, 1958; J oseph and Preziosi, 1989;

_ Tamma and Zhou, 1997). Combining this equation with the energy conservation equation
(no heat generation considered)

3J, aT 61

—_— = pgCc——

ox (6.113)
and eliminating J,, we arrive at the following governing equation for the temperature

equation as distribution g ‘

f32T aT  k 9T

32 Ve T can? (GR1e)

‘This is a hyperbolic type of equation, or telegraph equation. It differs from the parabolic
heat conduction equation obtained under the Fourier law, eq. (1.19), by adding the first
term on the left-hand side. The parabolic heat conduction equation implies that if a
temperature perturbation is applied at the boundary, it will be immediately felt through
the whole region (the temperature rise at infinity may be infinitely small but it is still
not absolutely zero). The hyperbolic heat conduction equation overcomes this dilemma
since the heat propagation is in the form of a wave and the temperature rise is zero on
Y the other side of the wave front. The solution is typically a damped wave due to the
-~ existence of the second term on the left-hand side. In addition to the Cattaneo equation,
there are also other accepted modifications such as the Jeffreys type of equation (Joseph
- and Preziosi, 1989),

Comment. The value of kg /e is 86 .V K~!, which gives an idea of the order of th
magnitude of the Seebeck coefficient in many materials.

6.3.5 Hyperbolic Heat Conduction Equation and Its Validity

One assumption we made in the derivation of the classical constitutive equations, su
as the Fourier law, is that the transient effect on the distribution function is negligible,

5 ]
T o KLtveVSf
at p " :

This will be valid if the variation of the distribution function in the time scale is much_
smaller than the variation of the distribution function in the length scale. Now, let’s relax
this approximation but still make the assumption that deviation from spatial equilibrium

is small. Equation (6.49) becomes

_dg . 8T 3 [aT '
T—+q=—k—~Thh— | —
ar 1 ax Tklat (ax> ‘ G112
Where k; is another physical property similar to thermal conductivity.
;. We comment here that although these equations can overcome the dilemma of infinite
speed of Fourier’s heat conduction equation, neither should be taken as generally appli-

g F _ .\
r—f+f=fo—r(v-Vrfo+—«vao) (6.110) : i
- cable. There are many mathematical studies on the solution of the hyperbolic type of heat

ot
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Figure 6.11 Local distribution f under the local-equilibrium
distribution deviates slightly from the equilibrium distribution fo-
The difference between f and fp, that is, the arrowed area, is the
driving force for the heat and current flux.

conduction equation with various boundary conditions, but few experimental reports on
the observation of hyperbolic heat conduction. Most of the theoretical studies are for
conditions that are difficult to realize in practice. This is because heat conductionin a fast’
heat transfer process is typically confined in a very small region such that the assumption

of small deviation from equilibrium in space is no longer valid. For such cases, one should’

resort to the Boltzmann equation (Majumdar, 1993) or to other approximations such as
the ballistic—diffusive equations that take the spatial deviation from local equilibrium
into consideration (Chen, 2001b). Although there is also experimental evidence on the
wave type of response in different media, these are mostly caused by energy exchange
between two fluids such as electrons and phonons (Qiu and Tien, 1993) or between
solids and liquids in porous media. ;
Thermal waves in dielectrics have been observed experimentally (Landau, 1941;
Ackerman et al., 1966; Narayanamurti and Dynes, 1972) and are often used as support
for the hyperbolic heat conduction equations. These thermal waves can only be observed
under special conditions when the mean free path of the umklapp scattering is long
compared to the specimen size and that of the normal scattering process is relatively
short (Guyer and Krumbansl, 1966). In this case, heat waves will propagate at a speed
of v/ +/3; this spe‘ed is called the second sound. In section 6.4.3, we will discuss in more
detail the origin of the second sound. It will be seen there that the second sound cannot
be attributed to the approximation made in eq. (6.110). Rather, it is due to the fact that
in a transport process dominated by normal scattering, the equilibrivm distribution must
be replaced by the displaced function, as in the displaced Maxwell distribution we use
in section 6.3.2. Thus it is justifiable to say that the hyperbolic heat conduction equation,
as derived in this section, cannot be used in most sitnations. i

6.3.6 Meaning of Local Equilibrium
and Validity of Diffusion Theories

From the derivation of the classical constitutive laws, the meaning of local equilibrium
that underlies all these relations becomes clear. From eq. (6.47) to eq. (6.49) we assumed
that the deviation of the distribution function from equilibrium is small, such that the local
distribution function can be represented by its equilibrium value modified by a small devi-
ation term that is proportional to the local gradient, as implied by eq. (6.49). In this sense,
the local equilibrium is not equilibrium at all. In figure 6.11, we illustrate the equilibrium

distribution function f; and the actual distribution function represented by eq. (6.49). 28

The distortion of f from fp is small under the local equilibrium assumption. Because
fo is isotropically distributed, it does not contribute to any net flux. Only the difference
between f and fp, that is, the arrowed area, contributes to the next current or heat fluxes.
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Thus, for the (drift) diffusion theories to be valid, the deviation from the equilibrium
must be small: i

Jfo>r (v ° V;fo + % ° vao) (6.116)

Taking phonon heat conduction as an example, multiplying the above inequality by Aw
and summing over all the phonon states, we have

Y hofo> ) horveVefy (6.117)
k k

The left-hand side is the phonon internal energy and the right-hand side is of the order
of /7, where ¥ is the average phonon velocity; thus,
kdT daT
U» ———~—-CA—
> —m C = (6.118)
where we used k = CvA/3.
If we make the approximation that the specific heat is independent of temperature
such that U = CT, the above condition becomes

—— <1 (6.119)

Equation (6.119) means that the temperature variation within one mean free path must
be small compared to the absolute temperature for the diffusion theory to be valid.

Another assumption that we made in our derivations, in going from eq: (6.47)
to (6.48), is that the deviation term g is much Jarger than the gradient of g:

f >veVg (6.120)

If we approximate Vg = g/L, where L is a characteristic length that can be associated
with, for example, the film thickness, the above inequality becomes

j Erv AT e ] : ’

: , ‘ 7 = =Kn < ) 6.121)
where Kn is called the Knudsen number. The above relation means the characteristic
length must be much larger than the mean free path for the diffusion theory to be valid.

Temporal wise, for the term 3f/3¢ to be negligible, we must have
of _f—Jo

7§<< Z

6.122)

For a transient phenomenon occurring with a characteristic time scale 7, (such as a laser
- pulse width), the above inequality requires - ' -: » :

T >T (6.123)

* which means that the transient process must be slow compared to the relaxation time.



262 NANOSCALE ENERGY TRANSPORT AND CONVERS™ "N

If any of the conditions (6.119), (6.121), or (6.123) are not satisfied, one must be
careful about whether the drift—diffusion relations discussed in this section are still valid: 3
Sometimes, eq. (6.121) can be violated but (6.119) is still valid, as in the case of heat o
conduction along a thin film. In this case, the Fourier law, for example is still valid 23
for heat conduction along the film, but the thermal conductivity must be modified. In -3
chapter 7, we will discuss various size effects for which one or several of these conditions
are no longer valid.

6.4 Conservation Equations

In the previous section we saw how constitutive equations, for example, relations
between heat flux and temperature gradient, or between electric current density and the
electrochemical potential gradient, can be derived from the Boltzmann equation. In this
section we will derive conservation equations, such as the particle continuity equation,
Navier—Stokes equations, and so on, from the Boltzmann equation. For simplicity in
notation, we will change the Cartesian coordinate notation from (x, y, z) to (x1, x2, x3)
and from (vy, vy, v;) to (v1, v2, v3). This will permit us to write long summations using -
the so-called Einstein summation convention, for example

i e e Lot HE et

2 av;
ax,

0y 3113

0x

dvy | dv,

0z

oy
9xy

i) (6.124) 1 B

0x9 3X3

where i is a dummy index and the repeating of i means summation over i. As another -
example, v;v; = v1 + u +v .
From the probability dlsmbutlon function f we can calculate the average quantities '

[ Xfd®v

of every microscopic variable X,
X)) = = = — / X d3v
) = =, %4

- [Xfdv
where we have used the short notation d3v = dvidvzdvs, p is the density, m is the
mass per particle, and the integration, which is a triple integration, is over all the
possible values of vy, vy, v3, that is, (—o0, co). In the previous section we solved -
the distribution function first and then proceeded to find the average quantities such
as the heat and current fluxes, or the shear stress as a function of the generalized 7
driven force. Here, we do not seek a solution for the distribution function. Rather, we.
will seek equations governing the average value of X. We multiply both sides of the .
Boltzmann equation by X and integrate over the momentum space (Reif, 1965; Vincenti
and Kruger, 1986)

fX(E+v°V'f+;¢-'VVf>d V—/X(—E,;)Cd,"

From the above equation, one can derive the Navier-Stokes equations for gas flow, -
and similar “convective” type of equation for electron and phonon transport, as will be_
demonstrated below.

(6.125)’

_ (6.126)_-__
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6.4.1 Navier-Stokes Equations

If we take the quantity X as meaning conserved quantities (such as mass, momentum,
and energy), the net scattering term, that is, the right-hand side of eq. (6.126), should
vanish. In these cases, the averaged Boltzmann equation can be significantly 51mp11ﬁed
The mxcroscoplc express1ons for these conserved quantities per particle of a dilute
gas are

Mass X =m (6.127)
Momentum X = mv (6.128)
Energy X = mv?/2 + mine (6.129)

‘Where i is the potential energy per unit mass of a particle.

Substituting eq. (6.127) into (6.126), the three terms on the lefi-hand side of
eq. (6.126) become, respectively,

0 00 o0

f/fm——duldvgdm a(n;n) Z’D
t

.00 =00 —00

o oo 0O
f / /mv.V,fdvldvzdv3
—00 —00 —0C0

o0 00 X

1]
_ oui)
dx;

(6.130)

d(mvs f)
dx3

A(muy f) i

9% )dvldvzdm

. d(mnu;)

(6.131)

ax,-

[c ol <R e <)

F
/ / /m; o vadl{ldv2dv3

—~00 —00 —00

= .70 70 /09 (Mg—l’?)dvldvzdw =0

—00 —00 —00

(6.132)

“where u is the average velocity. Equation (6.132) ends in zero because f approaches
zero as v approaches infinity. We also used the fact that 1, r, v are independent variables.
Although the average quantity, such as u, depends on r, this dependence is due to the

L _dependence of f onr. Using egs. (6.126, 6.130-6.132), the mass conservation equation
can be written as

ap d
+ a—J__l_(P“i) =0

ot (6.133)
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ation. In this case, mv is a vector and as an
= mvj. The three terms on the left-hand side

N ine the momentum equ: Equation (6.135) can be written as
ext, we exami
example, we choose one component, X

/ma(fv,-u,-)d-% a2 A(puzu;j) 3 B(mfvl{u}fd%)
v

of eg. (6.126) become 8x; Bx;
d(puu;)  Ap(vfvs)
oo 00 00 @ ma{mv;f)d i, = (ﬂauakj} 3 it (6.140)
[ ] [rifonsesn= ] ] [oo 0000
e oo —oo —00 —00 —00 With egs. (6.134), (6.136), and (6.140), the averaged Boltzmann equation, (6.126),
_ O(m xnuj) _ d(ou;) (6.134) & becomes .
et at A 3 ) ) | p(vv))) -
(puj) 4 (pujuj) 1 L L v, (6.141)
at ax; ax;
co oo 60 We can write the cross term as
/ f f mv;v e Ve f dvidvadvs p{vjv)) = P — 1 (6.142)
i = where P is the pressure, which compnses the normal components of the random
o0 00
= f /‘ f (a(m;jvif))dvldvzdvs (6.135) thermal velocity
. Xi o
A G R = S+ W5+ 03) = L) (6.43)
and t;; is the shear stress
[o s B> o B o] 7
T = —[p(vivj) — P3j;] (6.144)

///mvj—ovvfdvldvzdv3

where §;; is again the Kronecker delta function, which equals 1 when i = j and zero

—00 —00 —00
0o 00 when i # j. Equation (6.141) then becomes
= / (Uja(?f))dvldvidm B(,ou_,) d(puiuj) oP  dr;

Vi =—-—d4 —+V; 6.14.
—00 =00 —00 i ot T ax; ax' % dx; T ( 3)
P2 R v (6.136) This is the momentum conservation equation for the component in the j-direction.
=— ] / f F jf dvidvpdvy = —nFj = —V¥;j Smnla:ly, we can derive the energy conservation equation by setting X == mv2/2 +

5 o000 mwmt (Vincenti and Kruger, 1986)

where W is the force per unit volume or the body force- To further simplify eq. (6.135)
ompose the velocity into a random component and an average component,

a ; a v 1
g (o9 + g 5 [ (14 o)

we now dec

d
v=u+V (6.137 = 35 (ke = Jgi) + p(Firvi) (6.146)
]
such that .\:Vhere
l

3 =5 2 ’. /' 1

£ ffv ;;3 g T ¥ = )) + Yim (6.147)
v ;

= s the total internal energy (translational plus other forms of internal energy) and H is

the enthalpy per unit mass [J kg~!]

Jo-wfdy _

P
! H= = 6.148
¥)=T7py v+ (6.148)
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The heat flux is defined as ; The momentum equation can be written as (Lundstrom, 2000)
1 200 ) g
Jy = Ep(v,-fv/ )+P(vi‘,1[fmt) (6.149) d(nu;) + (nuiu;) ne &; 1 B(n.KB ]=-v) ap
3 at ; 6.153
Equations (6.133), (6.145), and (6.146) are the conservation equations for mass, % m m Ox ar |, ( )
momentum, and energy. To further simply the equation, we need the relation between where the temperature tensor is defined as
the shear stress and the average velocity, and between heat flux and temperature. 3 ]
The previous section has shown how to derive these constitutive equations. Followin ot , ' :
b = D= i / i —u)(vj —uj) fdv (6.154)

egs. (6.63-6.65) and maintaining a more general three-dimensional velocity profile, one
can show that the shear stress can be expressed as [Equation (6.154) actually corresponds to eq. (6.142). In fluid mechanics, this term
) L * y I 18

split into the normal stress (pressure) and shear stress. In electrohydrodynamics, this

nlhall dui | Ouj 2 duy ] I:Bu,' duj  20uy ] : ;
7 =nkpgTt| — + —+ —=—8j | =u|=—+ =— — 77—98ij 6.150 term is often directly related t .
y g [3-"} o 30w ¢ py Om - 39x g ' diagonal and isotropi):: so that © the electron temperature, T' by treating the tensor as
Substituting the above-generalized Newton shear stress law into eq. (6.145), we obtai =
the familiar Navier—Stokes equations. 9Tij _ oT
bx; % (6.155)

The right-hand side of eq. (6.153) is the rate of ing, v
‘ . (6. momentum scatteri ichi
expressed using the relaxation time approximation = meh K-

[% o il -
ot |, (6156)

Tm

6.4.2 Electrohydrodynamic Equation

When electrons flow in an electric field, they acquire-a nonzero average velocity. Wi
can perform similar operations for electron transport as we did above for gas molecule
to derive the governing equations for electron transport. There is, however, one compli
cation. In a semiconductor, the numbers of electrons and holes can vary. An electron in.
the conduction band can fall back into the valence band, a process called recombinatio;
which we will discuss in more detail in chapter 8. Due to electron and hole recombination,
the number of electrons in the conduction band and the number of holes in the valence
band are reduced. During this process, the excess energy of the electron is lost, either
by emitting a photon or by generating phonons. The latier becomes heat dissipation
The reverse process, that an electron is excited from the valence band to the conductio
band by absorbing photons and phonons, or kicked by other electrons, thus creating an
electron in the conduction band and a hole in the valence band, is called generation. The.

existence of the generation and recombination processes means that the scattering term.
is no longer zero. Other than this major difference, the derivation of the electron mass,
momentum, and energy conservation equation is very similar to the derivation of the
Navier-Stokes equations given in the previous section (Blotekjaer, 1970; Lundstrom, b
2000). Without the detailed derivation, we write down the continuity equation as

an__ a0u)
ot dx;

Using eqs. (6.155) and (6.156), we can write the momentum coﬁservation equation as

d(nuj) d(nujuj) ne&; 18
7 (nkgT) nu;
ot + Ox; # m i m ox; S 6.157)

Tm
The second term on the left-hand side re inerti
; lef presents the inertia effects of the electrons.
When these effects are negligible, the steady-state solution for the electron velocity is

A = _“r,,,negj _ Tm 9(nkpT)
e m m  dx;j

(6.158)

The current is J, = —enu, and thus

—G-R (6.151). s (6.159)

_ :;161.‘& we havt'e' neglected the variation of 7' with x. If this variation is included. we
¢ _l;lm an additional term corresponding to the thermoelectric effect. Equation {6.i59)
is IT:EJ_Ucal to eq. (6.82), the drift-diffusion equation.

ng the moment from the Boltzmann equation for the kineti
: etic ene
leads to the following energy conservation equation i

where 7 is the number density of electrons or holes, u is the average velocity of th
electrons defined according to eq. (6.138) and is called the drift velocity, G is the rate of -
generation of electrons, and R is the rate of recombination. We can also write the above:
equation in terms of the current density for electrons 5

on 1 3.)',; bl

ot > (6.152 e Wiy _ o g (3%
at  (—e) dx; a3 + 8%, —Je,é’i——a‘—:_—+< or )c—q (6.160)
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as Ty and Ty, the phonon hydrodynamic equations are established for the regime when
7y < Tu, and the time constant of heat transfer 7. is comparable with or smaller than
When 7, < Ty, that is, there exist no momentum-destroying scattering processes tl:e
phonon energy is redistributed in the normal scattering processes but the total momen’tum
along the direction of heat flow does not change. In this case, phonons have a nonzero
average velocity, u, as do molecules or electrons. The equilibrium distribution function
for the normal process is the drifted Bose—Einstein distribution

1
o () 1
. whereu is the average phonon drift velocity and k is the phonon wavevector. The phonon
Boltzmann equation can be written as ‘

where the energy \Pe cbmpriseé the thermal energy plus the average kinetic energy:

3 m 3 2 ™ 3
Vo= SncpT + %nu,-u,- = SncsT + %“—nuz (6.161)

The heat flux is expressed by the Fourier law

aT

oy i

4 ax;

and the énergy scattering rate must be determined for different scattering processe
(Blotekjaer, 1970). One example, which considers the electron and phonon at non-

equilibrium temperatures, is

Ja= (6.164)

<a;1;c) _ _mks (T —Tp) 3 nrr;uz (i . l) 6163
a T, Tn  Te af : - =8
. . N, =y : '”a“‘*""Vrf=—u—M (6.165)
where 7, is the energy relaxation fime, Tp is the phonon temperature, and 1, is th L] T, T
momentum relaxation time. This equation is valid only for electrons in the sam - We define the local energy and ol
conduction band. Similar equations can be written for holes and for electrons i el O e G Ll
different bands. The equation can be coupled to the phonon heat conduction equ Lo b 3
tion to form a closed set of equations. Further consideration of different phono @)} f hofd’k (6.166)
groups, such as optical and acoustic phonons, has also been undertaken (Fushinobu:
et al., 1995; Lai and Majumdar, 1996). '
Equations (6.152), (6.157), and (6.160) form a set of closed equations, call - . f Bk fd3k (6.167)
: - (2m) ) '

electrohydrodynamic equations, that can be used to solve for the electron density, drift
velocity, and temperature distributions. These equations were studied quite intensively:
in investigations of “hot electron” effects, that is, when the electron temperature is &
significantly higher than the phonon temperature. Such hot electrons can be generat
under a high electric field. Small electronic devices, such as the field-effect transistors.
used in integrated circuits, are often operated with a high electric field and often have
an electron temperature much higher than that of phonons. The electrohydrodynami
equations are sometimes used to study submicron devices. The applicability of the
electrohydrodynamic equations to very small devices, however, is highly questionable
because these equations are derived under the assumption of local equilibrium, which
may not be valid when the electron mean free path is much larger than the characteristic
length of the device. »

The above summary shows although the electrohydrodynamic equations share many
similarities with the Navier-Stokes equation, there are clearly places where different
concepts are used, such as the temperature tensor rather than the stress tensors. Th
consequences of these subtle differences have not been examined in detail.

: Herf:, for. simplicity in notation, we have assumed that the three phonon polarizations
. arc identical. Because phonons can be created and annihilated, the number density is
- not con§erved and no continuity equation is needed. Multiplying eq. (6.165) by hk; and
E‘n.tegr‘atmg over all wavevectors leads to the following momentum equation, o

9F | 9%y 3 f—f
| = = — 13
L1 T 9x; (2,,)3f = hkid’k (6.168)

gvhere the term related to Ty is zero because momentum is conserved for the

3
o BN . 3
= Gy / Alv) fd'k (6.169)

s similar to the inertia terms in the Navief—Stokes equations.

Multiplying eq. (6.165) by /iw and integrating over all wavevectors, we obtain the
v energy equation as )

6.4.3 Phonon Hydrodynamic Equations U aJy 3
In analogy to the hydrodynamic equations for molecules and electrons, theories hav’é g = ax (6.170)
been developed for the hydrodynamics of phonons (Gurevich, 1986). The motivation
behind phonon hydrodynamics is the relative importance of the normal scattering process .
- i doe o
(N -process) that conserves crystal momentum Versus the umklapp scattering that . Iy = (2?1}3 f heow; f 27k ©6171)

not conserve the momentum. Denoting the relaxation times for these two proces
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The above derivations have not made any assumption and are thus generally
applicable. Now we will follow strategies similar to those used in deriving the thermal
conductivity in order to further evaluate various terms in the momentum and energy
equations. From eq. (6.165), we see that the distribution function approaches

Inthe above qenvation. § is the entropy of one phonon quantum state and S is the phonon
entropy densujf. We ha\:re used integration by parts in carrying out the second-to-last step
and the following relationship for the entropy of one phonon state,* 2y

hw kgT Bs :
T So(l+ fo) = E Ty (6.177)
Substituting eq. (6.173) into (6.171), we obtain a Oth-ord i
e rder expression for the second

So/tu + fa/tN
Vo +1/tn (6'”22 '

When Ty < T,, the dominant term is f;. As a Oth-order approximation, we firs
examine how a nonzero drift velocity affects the momentum and energy transport. In i3

f—

this case, we can approximate %‘iii'. = ﬁ f Rwv; % 4k
d i hkeu
PR S fo= Pk eu= fot foll + ) mor 6173 3 . Tl N
= —(23)3 fﬂwa—ki (fo(l +f0)ﬁ‘_2-§ + fo(l + fo)__k_lﬁ) Bk
Using this distribution function, eq. (6.167) becomes B 4 kT 8x;
3 dw Rk, Bu
3 = f ho— fo(1 + fo) =k T8k 13
P = ——afhk[fddak (277)3 ok; fol fo) kT 9x; d s
(27) .
ou 2): 3 :
3 ‘ Akeu\ , = %% _3 / ® ( ds ) J
~—— | hk; = — T —)d
o [ (1o st + T ) 7 | e (T ) 4k
3 f ( M‘;‘“J‘) 3 dup 3 E
oy i | fo(1+ fo) Py | T o / ( kkTaki> 4’k
=uj 5 fh.-’c,— (fo(l + fo)————) d’k = niju; (6.174) 4% = T?ﬂ 3 oo du;
(2m) «pT ; o 3x; (271_)3 Oris)d’k = TSpa_x,' (6.178)
where 7;; is a second-order tensor, i s :
pEA SRR Substituting egs. (6.174), (6.176), and (6.178) into (6.168) and (6.170), we obtain
‘ 3 nk; ) 3 ) ;
= —— | i | ol + fo)—= | dk (6.175, 9(miju;) aT
" ey fia (f S ) o Sy =0 6.179)
LA
* and has units of kg m™3, which makes the P term in eq. (6.168) similar to the pu term in
the Navier-Stokes equations. Substituting eq. (6.173) into (6.169) and maintaining only, 788 c T TS du;i
the leading terms, we obtain the following expression for the second derivative term in 8k ot Pal_" i 0 (6.180)
eq. (6.168): . where we have used
O K jops /hk;v‘%cpk au aT
ax;  (2n)} T ox; o Ca_, (6.181)
aT odfazd g ]
= / Bv; <?ﬁ3_ by ﬁ;&) &k ., Equations (6.179) and (6.180) constitute the Oth-order phonon hydrodynamic
2m) oT dx; - Quy Ox; i ©quation, that is, the inviscid phonon flow since we have completely neglected the
st [ 22 B BT 4 o) TR Ol | gy Smklapp scattering. Elminating u; from egs. (6.179) and (6.180), we obtain
~N—s | Bk fo(l + fo)—57—+ fo(L + fo) :
(2m) ok; : kpT*dx; kpT 0xj } . "
s

(6.182)

3 dw 18s aT\ ;3 ar. .3 j‘ ds 3 ==l
i (o= )&k = —— — | —d’k 2 e
(25)3/ Ak ak,-( % 8w axj) ax; @n)® J T ok; 9% Cmij dx;0x;

3 s (0T aT ;
— — ) =5,— 176
e f.sd k<3xj) Sp o) (6.1

: ) ’
Equation (6.177) can be proven based on eqs. (4.14) and (4.40). See exercise 4.20.
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Umkla.pp scattering. These coefficients can be derived similarly to what we have done
in section 6.3 for other transport coefficients, that is, by substituting eq. (6.164) in the
left—h-and. side of the Boltzmann equation and solving for from eq. (6.165), followed by
substituting f into egs. (6.169) and (6.171). Details can be found in Gurevich (1986).*
Here we will give only the final results: ;

This equation is a hyperbolic one that implies that the temperature field propagates b
as a wave. In an isotropic medium, n;; degenerates into a scalar 77 and the corresponding
speed of wave propagation is called the second sound (Ward and Wilks, 1952): A

7} .
v =y (6.183)

- hZ :
In helium-II (Gurevich, 1986), Stmnp = 5T 2m)? f Tfo(fo+1)
2y T4 R 9 (k TIP3 . L N '
=72 ==—_8 __andC=3§ 6.184 £Um = Otm® knvp —8ppo—- ) &’k (6.189)
(RPT NG - T15R30 ? (6:158) C C

where v is the speed of sound. Substituting the above expressions into eq. (6.183) leads
tovy = v/ /3. This thermal wave has a very different origin to that of the hyperbolic heat
conduction equation discussed in section 6.3.5. The latter is derived under the relaxation
time approximation while keeping the time derivative of the distribution function. The’
former is derived on the basis of the displaced Bose-Einstein distribution for processes
dominated by normal scattering. Although the hyperbolic heat conduction equation
can be applied to umklapp-dominated processes, its derivation implies that the spatial
deviation from equilibrium is small. This condition is unlikely to be realized in fast
transport processes, which are usually accompanied by a steep temperature gradient or
masked by other carrier transport, as in fast laser experiments (Qiu and Tien, 1993).
The derivation of the phonon hydrodynamic equation does not consider the steep tem- 4§
perature gradient either. However, its premise is built on the assumption that the normal
scattering is much faster than the umklapp scattering, such that phonons have a large
drift velocity. This condition can be satisfied only at low temperatures. Thus, at room
temperature, the wave types of equation, either the hyperbolic heat conduction equation
discussed in section 6.3.5 or the hydrodynamic equation discussed here, are unlikely to
be applicable. ‘ ;

If the umklapp scattering is included, the phonon hydrodynamic equations can be
expressed as (Gurevich, 1986) : 3

B 3 TS !

o . . TS

Xii = (3T% (omy? f Twfo(fo+ 1) (wv,- r : km) (wu Tt "’k,,.) d%k (6.190)
. . fljm ;

2l h? 1 A
[;fo(fo + Dkikjd 'k (6.191)

V= ST @

where v; is the component of the group velocity. Their orders of magnitude are

7\3 73\32
g ”"”T(ﬁ) W X~ KT (h_) '

44 i
- kgT ST
- n }:i-u?’ k ~ Kp (;{;) VT, (6192)

Equations (6.185) and (6.186) are very similar to the Navier—Stokes equations. Similar

flow regimes can also be expected. For example, the phonon Poiseuille flow has been
observed and discussed in literature (Guyer and Krumhansl, 1966; Gurevich, 1986).

6.5 Summary of Chapter 6

% . . 0
—_— =
Bxpmdxy . kij “i

S
a*uj

op, . oT i
d _Eijrlnn

) L5, _3?‘ This chapter has two major aims: one is to introduce the Boltzmann equation, and the

‘other is to illustrate that classical laws can be derived from the Boltzmann equation
-under appropriate approximations.

. oT . % 57 (6.186) [h The Boltz‘manfl equatio'n, or the Bpltzm.ann transport equation, can be derived from

o :  the gen.eral Liouville equation. These equations are all established in phase space, which

¢ 1smultidimensional. The state of a system, described by the generalized coordina,tes r®

_’ d 1'nom.entum p™ of all the particles in the:system, is one point in the phase space at any

Spemfic time. The Liouville equation of motion describes the evolution of the distribution

- function fo_r anensemble of systems in phase space. The Boltzmann equation is simplified

from thc? Liouville equation through the use of the one-particle distribution function. The

:interaction of this particle with the rest of the particles in the system is represented by the

aT
Jo = TSpiti = Xij— (6.18
J

Pi = niju;j

where {ijmn is analogous to viscosity for normal scattering processes, and x;; is the 5
thermal conductivity tensor due to normal scattering processes, whereas k;;is the ther

i Gurevich’s book does not carry «p i . b
g . : : ! g in the Boltzmann factor. E i
mal conductivity tensor due to non-momentum-conserving scattering processes such a8 #& r. Expressions given here included «p for

stency.
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scattering term. The Boltzmann equation is valid only for a dilute system of particles, 3
such as gases, electrons, photons, and phonons in the particle regime. Because the 3
Boltzmann equation is based on the one-particle distribution function, the phase-space
coordinates comprise six coordinates: position r and translational momentum p (we did 3
not consider other modes of motion, such as rotation). ,

The key to the Boltzmann equation is the scattering term. Quantum mechanical prin- i
ciples are often used to deal with scattering. The time-dependent perturbation treatment %
in quantum mechanics leads to the Fermi golden rule for calculating the scattering
probability from one quantum state to another. A general expression of the scattering
integral can be formally written down on the basis of the scattering probability and
the distribution function. This leads to an integral-differential form of the Boltzmann
equation, which is difficult to solve but has often been treated in thermal radiation’
transport in the form of the equation of radiative transfer. For phonon and electron
transport, as well as gas transport, we often use the relaxation time approximation.
In chapter 8, we will further examine the cases in which the relaxation time approx--s
imation is invalid. The relaxation times for different carriers, including electrons,
phonons, photons, and molecules, are discussed. These typically involve unknown 3
constants that are determined by fitting experimental data on transport properties.
When multiple scattering coexists, the Matthiessen rule is often used to obtain the total
relaxation time.

Starting from the Boltzmann equation under the relaxation time approximation, we
proceed to derive the classical constitutive equations including the Fourier law, the
Newton shear stress law, the Ohm law, the drift-diffusion equations, and the thermo-
electric relations. The common assumptions made in all these relations are tha
(1) the transport process occurs in a time scale much longer than the relaxation time
and (2) deviation from equilibrium at every point is small—that is, the local equilibrium,
assumption. We showed that the kinetic coefficients of a particular type of carrier are
often related, because of their common origin, such as the relationship between viscosity
and thermal conductivity, the Einstein relation between diffusivity and mobility, and the
Wiedmann-Franz law linking electrical and thermal conductivity. The relationship o
Kinetic coefficients culminates in the Onsager reciprocal relations. We also commented
on the appropriateness of the hyperbolic heat conduction equation. The key message is
that all the constitutive relations are derived under certain approximations, which may =
no longer be valid for transport at micro- and nanoscales, as we will discuss in more
detail in the next chapter. : '

From the Boltzmann equation, we can also derive the familiar conservation equations.
We explained the derivation of the Navier-Stokes equations. Along a similar line o
derivation, one can obtain the electrohydrodynamic equations for charged carriers and
the phonon hydrodynamic equations. For phonons, we showed the phonon hydrody-
namic equations that originate from the difference between the normal scattering and
momentum-destroying scattering processes. The phonon hydrodynamic equations lead
to second sound and temperature waves, which occur only when the time scale of the
transport is longer than the relaxation time of normal scattering but much shorter than
the umklapp or other momentum-destroying processes. From our discussion, it should
become clear that the hyperbolic heat conduction equation, which often invokes th
existence of the second sound at low temperatures as a proof of its validity, has a limited
validity range that is difficult to realize through experiments, at least for single-carrt

Q% ¥ hes

o R

PARTICLE DESCRIPTION OF TRANSPORT PROCESSES: CLASSICAL LAWS

6.7 Nomenclature for Chapter 6

diffusivity, m? s~}
coefficient in eq. (6.31), s
coefficient in eq. (6.30)

coefficient in eq. (6.30), K—3s

specific heat, J kg~! K1
volumetric specific heat,
Im=3K-!

molecule diameter, m
density of states per unit
volume, m—3

unit charge, C

energy of one particle, J
conduction band edge, J
chemical potential, J
magnitude of electric field,
Vm™! ;
electric field vector, V m™!
one-particle distribution
function

equilibrium distribution
function

N -particle distribution
function

external force on the
particle, N

deviation from equilibrium
distribution

rate of generation per unit
volume, s~! m™3
Planck constant, J s
Planck constant divided by
27,1

e~y
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systems. In multiple-carrier systems, such as electron—phonon interactions, a subject
we will discuss in more detail in chapter 8, the coupling of electrons and phonons, with
their different heat capacities, can lead to hyperbolic types of heat conduction equation,
even though the governing equation for each carrier is still of the diffusion type. Such
wave-like equations should not be confused with the wave behavior of single carrier
systems. :

We again followed the tradition of parallel development for electrons, photons,
phonons, and molecules. Through this effort, we hope that the reader can see that
divisions between different disciplines are quite arbitrary. Although the languages are
very different, due to the historical developments within each field, common grounds
exist among them.

enthalpy, J kg3

intensity, W m~2 srad~!
flux of heat transfer rate,

W m~2; energy transfer rate,
W m™2; current, A m~2, and
particles, s~! m~2

thermal conductivity,
Wm~! K-!

thermal conductivity tensor
due to umklapp process,
Wm! K-! y
wavevector, m™!

unit vector along the
wavevector direction
extinction coefficient, m™!
characteristic length or
crystal length, m; Lorentz
number, W Q K~
coefficients

space or momentum degrees
of freedom of one particle;
mass, kg

scattering matrix element, J
total degree of freedom in
space or momentum for N
particles; particle number
density, m™3

number of particles in the
system

ith component of the
momentum in phase space,
kgms!
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P

Pi

momentum coordinate vector of
one particle, kgm s~ !
momentum coordinate vector of
particle i, kg m s!

pressure, N m2

average momentum per unit
volume, kg m™2 s~1

heat absorbed or rejected,
Wm2

heat generation,

Wm3

ith component of the space
coordinates, m

space coordinate vector of one
particle, m

space coordinate vector of
particle i, m

rate of recombination,

s 1m™3

polarization index; entropy
JK! ’
Seebeck coefficient, VK L
entropy density, J K '1m™
time, §

temperature, K
temperature tensor, K
average velocity, m s~
total energy density, J
velocity, m g1

drift velocity, m s~
Fermi velocity, m s
group velocity, m s7! -
second sound, m s~}
volume, m®

transition rate frorn initial state i
to final state f, s~
Cartesian coordinates
microscopic quantity
absorption coefficient, m
Thomson coefficient, VK™
parameter in the energy
dependence of electron
scattering

delta function

second-order tensor defined by
eq. (6.175), kg m™3

1

-1
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(7]
fp
A

Xij

We

Wint

DE e

—
=

polar angle

Debye temperature, K
mean free path, m
dynamic viscosity, N s m

electron mobility,
2 V—l —1

-2

viscosity defined by

eq. (6.189), kg mfl =i
Peltier coefficient, V
density, kg m™>

electrical conductivity,

Q 'm™!
frequency-dependent
scattering coefficient, m™!

defined by eq. (6.169), J m™*

relaxation time, s
characteristic time of a
process, s

scaftering phase function
azimuthal angle
electrostatic potential, V
electrochemical
potential, V

thermal conductivity tensor
due to normal process,
Wm ! K!

internal energy of molecules
Tkg™3

electron energy density,
Jm™3

potential energy,

Tkg™3

body force, N m™
angular frequency, Hz
solid angle, srad
ensemble average

Subscripts

zeroth order

components of Cartesian
coordinates, corresponding t
X, ¥, 2
boundary
drift
electron
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E energy 5 t total

f  final state u umklapp scattering

F  Fermi level ‘ x,y,z Cartesian component

g  group velocity v frequency dependent,

i initial state; coordinate spectral quantity
index :

| impurity Superscripts

m  momentum (n) n component in the phase

n  total degree _ space

N  normal process (N) N-particle

p Pphonon . time derivative

g heat s - average
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where a is of the order of distance between atoms and m is the atomic weight.
13:;)' Prove that the high-temperature thermal conductivity is proportional
tol/T. -

(b) The thermal conductivity of silicon at 300 K is 145 Wm~IK~!, Estimate its
thermal conductivity at 400 K.

6.3 Rosseicfnd diffusion approximation for phenon transport. Consider an absorbing
and e.lmtting medium for thermal radiation transport. When the photon mean free
path is much smaller than the characteristic length in the transport direction, the
local equilibrium approximation is valid. Prove that under this condition (called
optically thick) the radiative heat flux can be expressed as \

where o is‘the absorption coefficient. This is called the Rosseland diffusion

.~ approximation.

6.4 Wiedemann—Franz law. The electrical résistivity of gold at 300 K is 3.107 x

ai 1078 Q m. Estimate its thermal conductivity.

% 6.5 Wiedemann—Franz law. The thermal conductivity of copperis 401 Wm=! K—1 at

7 300 K. Estimate its electrical conductivity at the same temperature.

6.6 Energy and momentum relaxation time. The electrical resistivity and thermal

- conductivity of gold at 300 K are 3.107 x 10-8Q m and 315 Wm1K-1,
Estimate the momentum and energy relaxation time, and the momentum and
energy. relaxation length, of electrons in gold.

6.7 Thermal conductivity and viscosity. The thermal conductivity of air is
0.025 Wm~! K1, Estimate its dynamic viscosity.

6.8 Electrons in semiconductors. An n-type semiconductor has a carrier concen-

tration of 10!8 ¢cm=3 and a mobility of 200 cm? V—1s~1 at 300 K. Estimate

the following: (a) electrical conductivity; (b) electron diffusivity; (c) momentum

relaxation time; and (d) electron mean free path. Take the electron effective mass

as that of a free electron, |
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- (;) Ca.lculflte the Fermi level as a function of the carrier concentration from both
e emu—]:_urac an_d the Boltzmann distribution, and show that the levels do not
differ much in the given doping range. ‘ : '
(b) Calculate the Seebeck coefficient as a functi . i
6,14 ‘Scoback cortbnions o s st unction of the dopant concentration.
(a) Assuming a constant relaxation ti - '
t1 .
s e me, prove that the Seebeck coefficient

6.9 Thermal conductivity of gases. Prove that the thermal conductivity of a dilu
monatomic gas is ;

k= 2 (K—B) ntkgT
2\m

6.10 Thermoelectric cooler. A thermoelectric device is typically made of p—n junc:
tions as shown in figure P6.10. When a current flows through the p—n junction,

both electrons and holes carry energy from the cold side to the hot side. Th
Peltier coefficients of both p and n materials are equal in magnitude, I1, but of’;
opposite sign. The cooling rate due to current flow is 2I1 x I. In addition
this cooling, there is also Joule heating and reverse heat conduction. Assuming
that the electrical and thermal conductivities of both legs are the same, derive an
expression for the net cooling power at the cold side in terms of the temperatures
at the cold and the hot side, the current, and the cross-sectional area and lengtfl
of the leg. Show that the cooling power reaches a maximum at a certain optimum

2,2
kg T

IS| =
2eEf

(b) Prove that ZT for a metal satisfies the following inequality

2,252
3 kpT

ZT < 5
4Ef

. ) (c) Estimate the Seebeck coefficient of copper.
. 6.15 Ez;:sfem relation. Whe:q the Boltzmann approximation is valid, prove the Einstein
relation between mobility and diffusivity for electrons

current value.

kgT
a=—9u
e

Figure P6.10 Figure for problem 6.10.

6.11 Seebeck coefficients of a quantum well. Derive an expression for the Seebeck
coefficient of a quantum well of well-width d and with an infinite potentia
barrier height, as a function of the doping concentration.

6.12 Power factor of a quantum well. Because of Joule heating and reverse hea
conduction, the efficiency of a thermoelectric device is determined by the fig
of merit, defined as Z = S%5/k, where S is the Seebeck coefficient, o
electrical conductivity, and k the thermal conductivity. The numerator §%0 i
also called the power factor.

(a) Derive an expression for the power fac
4 and with an infinite barrier height, in terms of electron effective mass, relaxati

time, chemical potential, and quantum well width.
(b) Assuming constant relaxation time and Boltzmann distribution, simplify

tor 2o for a quantum well of width

results obtained. ;
6.13 Seebeck coefficient of nondegenerate silicon. For silicon with doping concen

tration between 10'¢ and 10'8 cm—2, the Boltzmann distribution can be used
instead of the Fermi-Dirac distribution. Silicon has six identical conduction
bands with an effective mass of 0.33 m, for each conduction band, wh
m, is the mass of a free electron. Assume a constant relaxation time.




